Filtros : "Bortolan, Matheus Cheque" "Financiamento FAPESP" Removido: "Indexado no zbMATH Open" Limpar

Filtros



Refine with date range


  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PACÍFICO, Tiago A. Sections and parallelizable semigroups. Differential Equations and Dynamical Systems, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12591-025-00734-0. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pacífico, T. A. (2025). Sections and parallelizable semigroups. Differential Equations and Dynamical Systems. doi:10.1007/s12591-025-00734-0
    • NLM

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
    • Vancouver

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PEREIRA, Fabiano. Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, v. 384, p. 279-325, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.12.008. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pereira, F. (2024). Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, 384, 279-325. doi:10.1016/j.jde.2023.12.008
    • NLM

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
    • Vancouver

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 27 nov. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-021-10066-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025