Filtros : "PROGRAMAÇÃO MATEMÁTICA" "Springer" Removido: "PROCESSOS ESTOCÁSTICOS" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: Just-in-time systems. Unidades: EP, IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RONCONI, Débora Pretti e BIRGIN, Ernesto Julian Goldberg. Mixed-integer programming models for flowshop scheduling problems minimizing the total earliness and tardiness. Just-in-time systems. Tradução . New York: Springer, 2012. . Disponível em: https://doi.org/10.1007/978-1-4614-1123-9_5. Acesso em: 07 nov. 2025.
    • APA

      Ronconi, D. P., & Birgin, E. J. G. (2012). Mixed-integer programming models for flowshop scheduling problems minimizing the total earliness and tardiness. In Just-in-time systems. New York: Springer. doi:10.1007/978-1-4614-1123-9_5
    • NLM

      Ronconi DP, Birgin EJG. Mixed-integer programming models for flowshop scheduling problems minimizing the total earliness and tardiness [Internet]. In: Just-in-time systems. New York: Springer; 2012. [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-1-4614-1123-9_5
    • Vancouver

      Ronconi DP, Birgin EJG. Mixed-integer programming models for flowshop scheduling problems minimizing the total earliness and tardiness [Internet]. In: Just-in-time systems. New York: Springer; 2012. [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-1-4614-1123-9_5
  • Source: Topics in numerical analysis : with special emphasis on nonlinear problems. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Topics in numerical analysis : with special emphasis on nonlinear problems. Tradução . Vienna: Springer, 2001. . Disponível em: https://doi.org/10.1007/978-3-7091-6217-0_5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2001). A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. In Topics in numerical analysis : with special emphasis on nonlinear problems. Vienna: Springer. doi:10.1007/978-3-7091-6217-0_5
    • NLM

      Birgin EJG, Martínez JM. A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients [Internet]. In: Topics in numerical analysis : with special emphasis on nonlinear problems. Vienna: Springer; 2001. [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-3-7091-6217-0_5
    • Vancouver

      Birgin EJG, Martínez JM. A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients [Internet]. In: Topics in numerical analysis : with special emphasis on nonlinear problems. Vienna: Springer; 2001. [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-3-7091-6217-0_5
  • Source: Encyclopedia of optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR (OTIMIZAÇÃO;MODELOS), OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA, PESQUISA OPERACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, J. M. Practical augmented lagrangian methods. Encyclopedia of optimization. Tradução . Cham: Springer, [S.d.]. . Disponível em: https://doi.org/10.1007/978-3-030-54621-2_517-1. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. Practical augmented lagrangian methods. In Encyclopedia of optimization. Cham: Springer. doi:10.1007/978-3-030-54621-2_517-1
    • NLM

      Birgin EJG, Martínez JM. Practical augmented lagrangian methods [Internet]. In: Encyclopedia of optimization. Cham: Springer; [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-3-030-54621-2_517-1
    • Vancouver

      Birgin EJG, Martínez JM. Practical augmented lagrangian methods [Internet]. In: Encyclopedia of optimization. Cham: Springer; [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-3-030-54621-2_517-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025