Filtros : "Computational Optimization and Applications" "MÉTODOS NUMÉRICOS" Removido: "HAESER, GABRIEL" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: INTERPOLAÇÃO, MÉTODOS ITERATIVOS, APROXIMAÇÃO POR MÍNIMOS QUADRADOS, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, v. 81, p. 689–715, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00344-w. Acesso em: 29 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, 81, 689–715. doi:10.1007/s10589-021-00344-w
    • NLM

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
    • Vancouver

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 29 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO RESTRITA, MÉTODOS NUMÉRICOS, OTIMIZAÇÃO CONVEXA, TEORIA ESPECTRAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AUSLENDER, Alfred e SILVA, Paulo J. S. e TEBOULLE, Marc. Nonmonotone projected gradient methods based on barrier and Euclidean distances. Computational Optimization and Applications, v. 38, n. 3, p. 305-327, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9025-0. Acesso em: 29 nov. 2025.
    • APA

      Auslender, A., Silva, P. J. S., & Teboulle, M. (2007). Nonmonotone projected gradient methods based on barrier and Euclidean distances. Computational Optimization and Applications, 38( 3), 305-327. doi:10.1007/s10589-007-9025-0
    • NLM

      Auslender A, Silva PJS, Teboulle M. Nonmonotone projected gradient methods based on barrier and Euclidean distances [Internet]. Computational Optimization and Applications. 2007 ; 38( 3): 305-327.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10589-007-9025-0
    • Vancouver

      Auslender A, Silva PJS, Teboulle M. Nonmonotone projected gradient methods based on barrier and Euclidean distances [Internet]. Computational Optimization and Applications. 2007 ; 38( 3): 305-327.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10589-007-9025-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025