Filtros : "Indexado no ISI Web of Knowledge" "Linear Algebra and its Applications" Removido: "2014" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Debora Duarte de et al. Cycles of linear and semilinear mappings. Linear Algebra and its Applications, v. 438, n. 8, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.12.023. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, D. D. de, Futorny, V., Klimchuk, T., kovalenko, D., & Sergeichuk, V. (2013). Cycles of linear and semilinear mappings. Linear Algebra and its Applications, 438( 8). doi:10.1016/j.laa.2012.12.023
    • NLM

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
    • Vancouver

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENTZEL, Irvin Roy e PERESI, Luiz Antonio. Special identities for Bol algebras. Linear Algebra and its Applications, v. 436, n. 7, p. 2315-2330, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.09.021. Acesso em: 05 dez. 2025.
    • APA

      Hentzel, I. R., & Peresi, L. A. (2012). Special identities for Bol algebras. Linear Algebra and its Applications, 436( 7), 2315-2330. doi:10.1016/j.laa.2011.09.021
    • NLM

      Hentzel IR, Peresi LA. Special identities for Bol algebras [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2315-2330.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.09.021
    • Vancouver

      Hentzel IR, Peresi LA. Special identities for Bol algebras [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2315-2330.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.09.021
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e FUTORNY, Vyacheslav e SERGEICHUK, Vladimir V. Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, v. 436, n. 7, p. 2670-2700, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.11.010. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., Futorny, V., & Sergeichuk, V. V. (2012). Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, 436( 7), 2670-2700. doi:10.1016/j.laa.2011.11.010
    • NLM

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
    • Vancouver

      Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms [Internet]. Linear Algebra and its Applications. 2012 ; 436( 7): 2670-2700.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.11.010
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARENICK, Douglas et al. A criterion for unitary similarity of upper triangular matrices in general position. Linear Algebra and its Applications, v. 435, n. 6, p. 1356-1369, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.03.021. Acesso em: 05 dez. 2025.
    • APA

      Farenick, D., Futorny, V., Gerasimovsky, V. I., Sergeichuk, V. V., & Shvai, N. (2011). A criterion for unitary similarity of upper triangular matrices in general position. Linear Algebra and its Applications, 435( 6), 1356-1369. doi:10.1016/j.laa.2011.03.021
    • NLM

      Farenick D, Futorny V, Gerasimovsky VI, Sergeichuk VV, Shvai N. A criterion for unitary similarity of upper triangular matrices in general position [Internet]. Linear Algebra and its Applications. 2011 ; 435( 6): 1356-1369.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.03.021
    • Vancouver

      Farenick D, Futorny V, Gerasimovsky VI, Sergeichuk VV, Shvai N. A criterion for unitary similarity of upper triangular matrices in general position [Internet]. Linear Algebra and its Applications. 2011 ; 435( 6): 1356-1369.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2011.03.021
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREMNER, Murray R. e PERESI, Luiz Antonio. An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra and its Applications, v. 430, n. 2-3, p. 642-659, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2008.09.003. Acesso em: 05 dez. 2025.
    • APA

      Bremner, M. R., & Peresi, L. A. (2009). An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra and its Applications, 430( 2-3), 642-659. doi:10.1016/j.laa.2008.09.003
    • NLM

      Bremner MR, Peresi LA. An application of lattice basis reduction to polynomial identities for algebraic structures [Internet]. Linear Algebra and its Applications. 2009 ; 430( 2-3): 642-659.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2008.09.003
    • Vancouver

      Bremner MR, Peresi LA. An application of lattice basis reduction to polynomial identities for algebraic structures [Internet]. Linear Algebra and its Applications. 2009 ; 430( 2-3): 642-659.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2008.09.003

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025