Filtros : "Indexado no ISI Web of Knowledge" "Journal of Mathematical Analysis and its Applications" Removido: "Financiamento FAPEMIG" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTILLO, Jesus M. F e FERENCZI, Valentin e MORENO, Yolanda. On Uniformly Finitely Extensible Banach spaces. Journal of Mathematical Analysis and its Applications, v. 410, n. 2, p. 670-686, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2013.08.053. Acesso em: 05 dez. 2025.
    • APA

      Castillo, J. M. F., Ferenczi, V., & Moreno, Y. (2014). On Uniformly Finitely Extensible Banach spaces. Journal of Mathematical Analysis and its Applications, 410( 2), 670-686. doi:10.1016/j.jmaa.2013.08.053
    • NLM

      Castillo JMF, Ferenczi V, Moreno Y. On Uniformly Finitely Extensible Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2014 ; 410( 2): 670-686.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2013.08.053
    • Vancouver

      Castillo JMF, Ferenczi V, Moreno Y. On Uniformly Finitely Extensible Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2014 ; 410( 2): 670-686.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2013.08.053
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE LORENTZ

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHAVES, Rosa Maria dos Santos Barreiro e DUSSAN, Martha P e MAGID, M. Bjorling problem for timelike surfaces in the Lorentz-Minkowski space. Journal of Mathematical Analysis and its Applications, v. 377, n. 2, p. 481-494, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2010.10.076. Acesso em: 05 dez. 2025.
    • APA

      Chaves, R. M. dos S. B., Dussan, M. P., & Magid, M. (2011). Bjorling problem for timelike surfaces in the Lorentz-Minkowski space. Journal of Mathematical Analysis and its Applications, 377( 2), 481-494. doi:10.1016/j.jmaa.2010.10.076
    • NLM

      Chaves RM dos SB, Dussan MP, Magid M. Bjorling problem for timelike surfaces in the Lorentz-Minkowski space [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 377( 2): 481-494.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2010.10.076
    • Vancouver

      Chaves RM dos SB, Dussan MP, Magid M. Bjorling problem for timelike surfaces in the Lorentz-Minkowski space [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 377( 2): 481-494.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2010.10.076
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: FUNÇÕES GENERALIZADAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDEZ, Roseli. On the Hamilton-Jacobi equation in the framework of generalized functions. Journal of Mathematical Analysis and its Applications, v. 382, n. 1, p. 487-502, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2011.04.069. Acesso em: 05 dez. 2025.
    • APA

      Fernandez, R. (2011). On the Hamilton-Jacobi equation in the framework of generalized functions. Journal of Mathematical Analysis and its Applications, 382( 1), 487-502. doi:10.1016/j.jmaa.2011.04.069
    • NLM

      Fernandez R. On the Hamilton-Jacobi equation in the framework of generalized functions [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 382( 1): 487-502.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2011.04.069
    • Vancouver

      Fernandez R. On the Hamilton-Jacobi equation in the framework of generalized functions [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 382( 1): 487-502.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2011.04.069
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. Towards a maximal extension of Pelczynski's decomposition method in Banach spaces. Journal of Mathematical Analysis and its Applications, v. 356, n. 1, p. 86-95, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2009.01.077. Acesso em: 05 dez. 2025.
    • APA

      Galego, E. M. (2009). Towards a maximal extension of Pelczynski's decomposition method in Banach spaces. Journal of Mathematical Analysis and its Applications, 356( 1), 86-95. doi:10.1016/j.jmaa.2009.01.077
    • NLM

      Galego EM. Towards a maximal extension of Pelczynski's decomposition method in Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2009 ; 356( 1): 86-95.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2009.01.077
    • Vancouver

      Galego EM. Towards a maximal extension of Pelczynski's decomposition method in Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2009 ; 356( 1): 86-95.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2009.01.077
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. A family of Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, v. 341, n. 2, p. 1181-1189, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2007.11.003. Acesso em: 05 dez. 2025.
    • APA

      Galego, E. M. (2008). A family of Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, 341( 2), 1181-1189. doi:10.1016/j.jmaa.2007.11.003
    • NLM

      Galego EM. A family of Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 341( 2): 1181-1189.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2007.11.003
    • Vancouver

      Galego EM. A family of Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 341( 2): 1181-1189.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2007.11.003
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. Some Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, v. 338, n. 1, p. 653-661, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2007.04.078. Acesso em: 05 dez. 2025.
    • APA

      Galego, E. M. (2008). Some Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, 338( 1), 653-661. doi:10.1016/j.jmaa.2007.04.078
    • NLM

      Galego EM. Some Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 338( 1): 653-661.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2007.04.078
    • Vancouver

      Galego EM. Some Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 338( 1): 653-661.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2007.04.078

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025