Filtros : "Computational Optimization and Applications" "MÉTODOS NUMÉRICOS" Removido: "2022" Limpar

Filtros



Limitar por data


  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 06 dez. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: OTIMIZAÇÃO RESTRITA, MÉTODOS NUMÉRICOS, OTIMIZAÇÃO CONVEXA, TEORIA ESPECTRAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AUSLENDER, Alfred e SILVA, Paulo J. S. e TEBOULLE, Marc. Nonmonotone projected gradient methods based on barrier and Euclidean distances. Computational Optimization and Applications, v. 38, n. 3, p. 305-327, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9025-0. Acesso em: 06 dez. 2025.
    • APA

      Auslender, A., Silva, P. J. S., & Teboulle, M. (2007). Nonmonotone projected gradient methods based on barrier and Euclidean distances. Computational Optimization and Applications, 38( 3), 305-327. doi:10.1007/s10589-007-9025-0
    • NLM

      Auslender A, Silva PJS, Teboulle M. Nonmonotone projected gradient methods based on barrier and Euclidean distances [Internet]. Computational Optimization and Applications. 2007 ; 38( 3): 305-327.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-007-9025-0
    • Vancouver

      Auslender A, Silva PJS, Teboulle M. Nonmonotone projected gradient methods based on barrier and Euclidean distances [Internet]. Computational Optimization and Applications. 2007 ; 38( 3): 305-327.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10589-007-9025-0

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025