Filtros : "Journal of Optimization Theory and Applications" "IME" Removido: "PROGRAMAÇÃO NÃO LINEAR" Limpar

Filtros



Refine with date range


  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, CONVERGÊNCIA, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, v. 206, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02734-0. Acesso em: 29 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., Maculan, N., & Ramirez, L. M. (2025). On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, 206, 1-25. doi:10.1007/s10957-025-02734-0
    • NLM

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
    • Vancouver

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, v. 187, n. 2, p. 469-487, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01749-z. Acesso em: 29 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, 187( 2), 469-487. doi:10.1007/s10957-020-01749-z
    • NLM

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
    • Vancouver

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: MÉTODOS DE PONTOS INTERIORES, PROGRAMAÇÃO QUADRÁTICA, PROGRAMAÇÃO CONVEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger e GONZAGA, Clovis Caesar e HAESER, Gabriel. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, v. 162, n. 3, p. 705-717, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10957-013-0492-4. Acesso em: 29 nov. 2025.
    • APA

      Behling, R., Gonzaga, C. C., & Haeser, G. (2014). Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, 162( 3), 705-717. doi:10.1007/s10957-013-0492-4
    • NLM

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10957-013-0492-4
    • Vancouver

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s10957-013-0492-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025