Filtros : "Calculus of Variations and Partial Differential Equations" Removido: "IME" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, MÉTODOS VARIACIONAIS, MECÂNICA QUÂNTICA, BIOMATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BÖER, Eduardo e MOREIRA DOS SANTOS, Ederson. Standing waves for nonlinear Hartree type equations: existence and qualitative properties. Calculus of Variations and Partial Differential Equations, v. 64, n. Ju 2025, p. 1-36, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00526-025-03025-2. Acesso em: 10 dez. 2025.
    • APA

      Böer, E., & Moreira dos Santos, E. (2025). Standing waves for nonlinear Hartree type equations: existence and qualitative properties. Calculus of Variations and Partial Differential Equations, 64( Ju 2025), 1-36. doi:10.1007/s00526-025-03025-2
    • NLM

      Böer E, Moreira dos Santos E. Standing waves for nonlinear Hartree type equations: existence and qualitative properties [Internet]. Calculus of Variations and Partial Differential Equations. 2025 ; 64( Ju 2025): 1-36.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-025-03025-2
    • Vancouver

      Böer E, Moreira dos Santos E. Standing waves for nonlinear Hartree type equations: existence and qualitative properties [Internet]. Calculus of Variations and Partial Differential Equations. 2025 ; 64( Ju 2025): 1-36.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-025-03025-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, TEORIA ESPECTRAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson et al. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, v. 62, n. 2, p. 1-38, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02386-2. Acesso em: 10 dez. 2025.
    • APA

      Moreira dos Santos, E., Nornberg, G., Schiera, D., & Tavares, H. (2023). Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, 62( 2), 1-38. doi:10.1007/s00526-022-02386-2
    • NLM

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
    • Vancouver

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO, OPERADORES, ANÁLISE FUNCIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes dos e PONTES, Pedro Fellype da Silva e SOARES, Sérgio Henrique Monari. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities. Calculus of Variations and Partial Differential Equations, v. 62, n. 3, p. 1-33, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-023-02437-2. Acesso em: 10 dez. 2025.
    • APA

      Santos, J. A. dos, Pontes, P. F. da S., & Soares, S. H. M. (2023). A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities. Calculus of Variations and Partial Differential Equations, 62( 3), 1-33. doi:10.1007/s00526-023-02437-2
    • NLM

      Santos JA dos, Pontes PF da S, Soares SHM. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 3): 1-33.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-023-02437-2
    • Vancouver

      Santos JA dos, Pontes PF da S, Soares SHM. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 3): 1-33.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-023-02437-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUPERFÍCIES MÍNIMAS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GÁLVEZ, José A e MIRA, Pablo e TASSI, Marcos Paulo. A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, v. 61, n. 4, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02222-7. Acesso em: 10 dez. 2025.
    • APA

      Gálvez, J. A., Mira, P., & Tassi, M. P. (2022). A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, 61( 4), 1-20. doi:10.1007/s00526-022-02222-7
    • NLM

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
    • Vancouver

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos e SANTOS, Makson Sales. Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, v. 61, n. 5, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02291-8. Acesso em: 10 dez. 2025.
    • APA

      Andrade, P. D. S., & Santos, M. S. (2022). Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, 61( 5), 1-13. doi:10.1007/s00526-022-02291-8
    • NLM

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-022-02291-8
    • Vancouver

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-022-02291-8
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 2ª ORDEM, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, João Vitor da e NORNBERG, Gabrielle. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, v. 60, n. 6, p. 1-40, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00526-021-02082-7. Acesso em: 10 dez. 2025.
    • APA

      Silva, J. V. da, & Nornberg, G. (2021). Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, 60( 6), 1-40. doi:10.1007/s00526-021-02082-7
    • NLM

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-021-02082-7
    • Vancouver

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-021-02082-7
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO, ESPAÇOS DE ORLICZ, ESPAÇOS DE SOBOLEV

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes e SOARES, Sérgio Henrique Monari. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces. Calculus of Variations and Partial Differential Equations, v. 59, n. 6, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00526-020-01857-8. Acesso em: 10 dez. 2025.
    • APA

      Santos, J. A., & Soares, S. H. M. (2020). Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces. Calculus of Variations and Partial Differential Equations, 59( 6), 1-23. doi:10.1007/s00526-020-01857-8
    • NLM

      Santos JA, Soares SHM. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 6): 1-23.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-020-01857-8
    • Vancouver

      Santos JA, Soares SHM. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 6): 1-23.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-020-01857-8
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA JUNIOR, Vanderley e MOREIRA DOS SANTOS, Ederson. On the finite space blow up of the solutions of the Swift–Hohenberg equation. Calculus of Variations and Partial Differential Equations, v. 54, n. 1, p. Se 2015, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00526-015-0821-6. Acesso em: 10 dez. 2025.
    • APA

      Ferreira Junior, V., & Moreira dos Santos, E. (2015). On the finite space blow up of the solutions of the Swift–Hohenberg equation. Calculus of Variations and Partial Differential Equations, 54( 1), Se 2015. doi:10.1007/s00526-015-0821-6
    • NLM

      Ferreira Junior V, Moreira dos Santos E. On the finite space blow up of the solutions of the Swift–Hohenberg equation [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; 54( 1): Se 2015.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-015-0821-6
    • Vancouver

      Ferreira Junior V, Moreira dos Santos E. On the finite space blow up of the solutions of the Swift–Hohenberg equation [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; 54( 1): Se 2015.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1007/s00526-015-0821-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025