Filtros : "Calculus of Variations and Partial Differential Equations" "Financiamento FAPESP" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAMIAN, Heydy Melchora Santos e SICILIANO, Gaetano. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, v. 63, n. artigo 55, p. 1-23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00526-024-02775-9. Acesso em: 08 dez. 2025.
    • APA

      Damian, H. M. S., & Siciliano, G. (2024). Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, 63( artigo 55), 1-23. doi:10.1007/s00526-024-02775-9
    • NLM

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
    • Vancouver

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, TEORIA ESPECTRAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson et al. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, v. 62, n. 2, p. 1-38, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02386-2. Acesso em: 08 dez. 2025.
    • APA

      Moreira dos Santos, E., Nornberg, G., Schiera, D., & Tavares, H. (2023). Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, 62( 2), 1-38. doi:10.1007/s00526-022-02386-2
    • NLM

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
    • Vancouver

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUPERFÍCIES MÍNIMAS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GÁLVEZ, José A e MIRA, Pablo e TASSI, Marcos Paulo. A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, v. 61, n. 4, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02222-7. Acesso em: 08 dez. 2025.
    • APA

      Gálvez, J. A., Mira, P., & Tassi, M. P. (2022). A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, 61( 4), 1-20. doi:10.1007/s00526-022-02222-7
    • NLM

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
    • Vancouver

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos e SANTOS, Makson Sales. Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, v. 61, n. 5, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02291-8. Acesso em: 08 dez. 2025.
    • APA

      Andrade, P. D. S., & Santos, M. S. (2022). Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, 61( 5), 1-13. doi:10.1007/s00526-022-02291-8
    • NLM

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02291-8
    • Vancouver

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02291-8
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 2ª ORDEM, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, João Vitor da e NORNBERG, Gabrielle. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, v. 60, n. 6, p. 1-40, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00526-021-02082-7. Acesso em: 08 dez. 2025.
    • APA

      Silva, J. V. da, & Nornberg, G. (2021). Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, 60( 6), 1-40. doi:10.1007/s00526-021-02082-7
    • NLM

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-021-02082-7
    • Vancouver

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-021-02082-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025