Filtros : "Calculus of Variations and Partial Differential Equations" "Financiamento CAPES" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAMIAN, Heydy Melchora Santos e SICILIANO, Gaetano. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, v. 63, n. artigo 55, p. 1-23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00526-024-02775-9. Acesso em: 09 dez. 2025.
    • APA

      Damian, H. M. S., & Siciliano, G. (2024). Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, 63( artigo 55), 1-23. doi:10.1007/s00526-024-02775-9
    • NLM

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
    • Vancouver

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO, OPERADORES, ANÁLISE FUNCIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes dos e PONTES, Pedro Fellype da Silva e SOARES, Sérgio Henrique Monari. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities. Calculus of Variations and Partial Differential Equations, v. 62, n. 3, p. 1-33, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-023-02437-2. Acesso em: 09 dez. 2025.
    • APA

      Santos, J. A. dos, Pontes, P. F. da S., & Soares, S. H. M. (2023). A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities. Calculus of Variations and Partial Differential Equations, 62( 3), 1-33. doi:10.1007/s00526-023-02437-2
    • NLM

      Santos JA dos, Pontes PF da S, Soares SHM. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 3): 1-33.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-023-02437-2
    • Vancouver

      Santos JA dos, Pontes PF da S, Soares SHM. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 3): 1-33.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-023-02437-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos e SANTOS, Makson Sales. Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, v. 61, n. 5, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02291-8. Acesso em: 09 dez. 2025.
    • APA

      Andrade, P. D. S., & Santos, M. S. (2022). Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, 61( 5), 1-13. doi:10.1007/s00526-022-02291-8
    • NLM

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-022-02291-8
    • Vancouver

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-022-02291-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025