Filtros : "Calculus of Variations and Partial Differential Equations" "2016" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: GEOMETRIA SIMPLÉTICA, SISTEMAS DINÂMICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HRYNIEWICZ, Umberto L e SALOMÃO, Pedro Antônio Santoro. Elliptic bindings for dynamically convex Reeb flows on the real projective three-space. Calculus of Variations and Partial Differential Equations, v. 55, n. article º 43, p. 57 , 2016Tradução . . Disponível em: https://doi.org/10.1007/s00526-016-0975-x. Acesso em: 09 dez. 2025.
    • APA

      Hryniewicz, U. L., & Salomão, P. A. S. (2016). Elliptic bindings for dynamically convex Reeb flows on the real projective three-space. Calculus of Variations and Partial Differential Equations, 55( article º 43), 57 . doi:10.1007/s00526-016-0975-x
    • NLM

      Hryniewicz UL, Salomão PAS. Elliptic bindings for dynamically convex Reeb flows on the real projective three-space [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( article º 43): 57 .[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-016-0975-x
    • Vancouver

      Hryniewicz UL, Salomão PAS. Elliptic bindings for dynamically convex Reeb flows on the real projective three-space [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( article º 43): 57 .[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-016-0975-x
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, MÉTODOS VARIACIONAIS, OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAMBOLEY, Jimmy et al. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, v. 55, n. 6, p. 1-37, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00526-016-1084-6. Acesso em: 09 dez. 2025.
    • APA

      Lamboley, J., Laurain, A., Nadin, G., & Privat, Y. (2016). Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, 55( 6), 1-37. doi:10.1007/s00526-016-1084-6
    • NLM

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-016-1084-6
    • Vancouver

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2025 dez. 09 ] Available from: https://doi.org/10.1007/s00526-016-1084-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025