Filtros : "Calculus of Variations and Partial Differential Equations" "EQUAÇÕES DIFERENCIAIS PARCIAIS" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAMIAN, Heydy Melchora Santos e SICILIANO, Gaetano. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, v. 63, n. artigo 55, p. 1-23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00526-024-02775-9. Acesso em: 15 dez. 2025.
    • APA

      Damian, H. M. S., & Siciliano, G. (2024). Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, 63( artigo 55), 1-23. doi:10.1007/s00526-024-02775-9
    • NLM

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
    • Vancouver

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, TEORIA ESPECTRAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson et al. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, v. 62, n. 2, p. 1-38, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02386-2. Acesso em: 15 dez. 2025.
    • APA

      Moreira dos Santos, E., Nornberg, G., Schiera, D., & Tavares, H. (2023). Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, 62( 2), 1-38. doi:10.1007/s00526-022-02386-2
    • NLM

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
    • Vancouver

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos e SANTOS, Makson Sales. Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, v. 61, n. 5, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02291-8. Acesso em: 15 dez. 2025.
    • APA

      Andrade, P. D. S., & Santos, M. S. (2022). Improved regularity for the parabolic normalized p-Laplace equation. Calculus of Variations and Partial Differential Equations, 61( 5), 1-13. doi:10.1007/s00526-022-02291-8
    • NLM

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-022-02291-8
    • Vancouver

      Andrade PDS, Santos MS. Improved regularity for the parabolic normalized p-Laplace equation [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 5): 1-13.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-022-02291-8
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, MÉTODOS VARIACIONAIS, OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAMBOLEY, Jimmy et al. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, v. 55, n. 6, p. 1-37, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00526-016-1084-6. Acesso em: 15 dez. 2025.
    • APA

      Lamboley, J., Laurain, A., Nadin, G., & Privat, Y. (2016). Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, 55( 6), 1-37. doi:10.1007/s00526-016-1084-6
    • NLM

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-016-1084-6
    • Vancouver

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-016-1084-6
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA JUNIOR, Vanderley e MOREIRA DOS SANTOS, Ederson. On the finite space blow up of the solutions of the Swift–Hohenberg equation. Calculus of Variations and Partial Differential Equations, v. 54, n. 1, p. Se 2015, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00526-015-0821-6. Acesso em: 15 dez. 2025.
    • APA

      Ferreira Junior, V., & Moreira dos Santos, E. (2015). On the finite space blow up of the solutions of the Swift–Hohenberg equation. Calculus of Variations and Partial Differential Equations, 54( 1), Se 2015. doi:10.1007/s00526-015-0821-6
    • NLM

      Ferreira Junior V, Moreira dos Santos E. On the finite space blow up of the solutions of the Swift–Hohenberg equation [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; 54( 1): Se 2015.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-015-0821-6
    • Vancouver

      Ferreira Junior V, Moreira dos Santos E. On the finite space blow up of the solutions of the Swift–Hohenberg equation [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; 54( 1): Se 2015.[citado 2025 dez. 15 ] Available from: https://doi.org/10.1007/s00526-015-0821-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025