Filtros : "Computer Methods in Applied Mechanics and Engineering" "Sanches, Rodolfo André Kuche" Limpar

Filtros



Refine with date range


  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, ESCOAMENTO, MECÂNICA DOS FLUÍDOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AVANCINI, Giovane et al. A particle-position-based finite element formulation for free-surface flows with topological changes. Computer Methods in Applied Mechanics and Engineering, v. 429, p. 1-26, 2024Tradução . . Disponível em: https://dx.doi.org/10.1016/j.cma.2024.117118. Acesso em: 09 nov. 2025.
    • APA

      Avancini, G., Franci, A., Idelsohn, S., & Sanches, R. A. K. (2024). A particle-position-based finite element formulation for free-surface flows with topological changes. Computer Methods in Applied Mechanics and Engineering, 429, 1-26. doi:10.1016/j.cma.2024.117118
    • NLM

      Avancini G, Franci A, Idelsohn S, Sanches RAK. A particle-position-based finite element formulation for free-surface flows with topological changes [Internet]. Computer Methods in Applied Mechanics and Engineering. 2024 ; 429 1-26.[citado 2025 nov. 09 ] Available from: https://dx.doi.org/10.1016/j.cma.2024.117118
    • Vancouver

      Avancini G, Franci A, Idelsohn S, Sanches RAK. A particle-position-based finite element formulation for free-surface flows with topological changes [Internet]. Computer Methods in Applied Mechanics and Engineering. 2024 ; 429 1-26.[citado 2025 nov. 09 ] Available from: https://dx.doi.org/10.1016/j.cma.2024.117118
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: MECÂNICA DA FRATURA, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSA, Rosicley Júnio Rodrigues e CODA, Humberto Breves e SANCHES, Rodolfo André Kuche. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, v. 392, p. 1-28, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2022.114622. Acesso em: 09 nov. 2025.
    • APA

      Rosa, R. J. R., Coda, H. B., & Sanches, R. A. K. (2022). Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 392, 1-28. doi:10.1016/j.cma.2022.114622
    • NLM

      Rosa RJR, Coda HB, Sanches RAK. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 392 1-28.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2022.114622
    • Vancouver

      Rosa RJR, Coda HB, Sanches RAK. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 392 1-28.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2022.114622
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Jeferson Wilian Dossa e SANCHES, Rodolfo André Kuche e BARBARULO, Andrea. A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, v. 386, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2021.114102. Acesso em: 09 nov. 2025.
    • APA

      Fernandes, J. W. D., Sanches, R. A. K., & Barbarulo, A. (2021). A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 386, 1-22. doi:10.1016/j.cma.2021.114102
    • NLM

      Fernandes JWD, Sanches RAK, Barbarulo A. A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations [Internet]. Computer Methods in Applied Mechanics and Engineering. 2021 ; 386 1-22.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2021.114102
    • Vancouver

      Fernandes JWD, Sanches RAK, Barbarulo A. A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations [Internet]. Computer Methods in Applied Mechanics and Engineering. 2021 ; 386 1-22.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2021.114102
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, MÉTODO DOS ELEMENTOS FINITOS, MÉTODOS DE DECOMPOSIÇÃO, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Jeferson Wilian Dossa et al. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework. Computer Methods in Applied Mechanics and Engineering, v. 370, p. 1-30, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2020.113073. Acesso em: 09 nov. 2025.
    • APA

      Fernandes, J. W. D., Barbarulo, A., Dhia, H. B., & Sanches, R. A. K. (2020). A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework. Computer Methods in Applied Mechanics and Engineering, 370, 1-30. doi:10.1016/j.cma.2020.113073
    • NLM

      Fernandes JWD, Barbarulo A, Dhia HB, Sanches RAK. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 370 1-30.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2020.113073
    • Vancouver

      Fernandes JWD, Barbarulo A, Dhia HB, Sanches RAK. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 370 1-30.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2020.113073
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: INTERAÇÃO FLUIDO-ESTRUTURA, MÉTODO DOS ELEMENTOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANCHES, Rodolfo André Kuche e CODA, Humberto Breves. Unconstrained vector nonlinear dynamic shell formulation applied to fluid structure interaction. Computer Methods in Applied Mechanics and Engineering, v. 259, p. 177-196, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2013.02.016. Acesso em: 09 nov. 2025.
    • APA

      Sanches, R. A. K., & Coda, H. B. (2013). Unconstrained vector nonlinear dynamic shell formulation applied to fluid structure interaction. Computer Methods in Applied Mechanics and Engineering, 259, 177-196. doi:10.1016/j.cma.2013.02.016
    • NLM

      Sanches RAK, Coda HB. Unconstrained vector nonlinear dynamic shell formulation applied to fluid structure interaction [Internet]. Computer Methods in Applied Mechanics and Engineering. 2013 ; 259 177-196.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2013.02.016
    • Vancouver

      Sanches RAK, Coda HB. Unconstrained vector nonlinear dynamic shell formulation applied to fluid structure interaction [Internet]. Computer Methods in Applied Mechanics and Engineering. 2013 ; 259 177-196.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.cma.2013.02.016

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025