Filtros : "Financiamento Russian Foundation for Basic Research" "Algebra and Logic" Limpar

Filtros



Refine with date range


  • Source: Algebra and Logic. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA DIFERENCIAL, ÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e POPOV, A. A e SHESTAKOV, Ivan P. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, v. 52, n. 4, p. 277-289, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10469-013-9242-9. Acesso em: 15 nov. 2025.
    • APA

      Zhelyabin, V. N., Popov, A. A., & Shestakov, I. P. (2013). The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, 52( 4), 277-289. doi:10.1007/s10469-013-9242-9
    • NLM

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
    • Vancouver

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, Alexander P e SHESTAKOV, Ivan P. Noncommutative Jordan superalgebras of degree n > 2. Algebra and Logic, v. 49, n. 1, p. 26-59, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10469-010-9077-6. Acesso em: 15 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2010). Noncommutative Jordan superalgebras of degree n > 2. Algebra and Logic, 49( 1), 26-59. doi:10.1007/s10469-010-9077-6
    • NLM

      Pozhidaev AP, Shestakov IP. Noncommutative Jordan superalgebras of degree n > 2 [Internet]. Algebra and Logic. 2010 ; 49( 1): 26-59.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-010-9077-6
    • Vancouver

      Pozhidaev AP, Shestakov IP. Noncommutative Jordan superalgebras of degree n > 2 [Internet]. Algebra and Logic. 2010 ; 49( 1): 26-59.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-010-9077-6
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMANOVSKII, N. S e SHESTAKOV, Ivan P. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, v. 47, n. 4, p. 269-278, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10469-008-9018-9. Acesso em: 15 nov. 2025.
    • APA

      Romanovskii, N. S., & Shestakov, I. P. (2008). Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, 47( 4), 269-278. doi:10.1007/s10469-008-9018-9
    • NLM

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-008-9018-9
    • Vancouver

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-008-9018-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025