Filtros : "Financiamento GeoCis/LSO/ESALQ/USP" "Financiamento ARC" Removido: "ALBARRACIN, HEIDY SOLEDAD RODRÍGUEZ" Limpar

Filtros



Limitar por data


  • Fonte: Soil Discussions. Unidade: ESALQ

    Assuntos: ANÁLISE DO SOLO, APRENDIZADO COMPUTACIONAL, ESPECTROSCOPIA INFRAVERMELHA, REDES NEURAIS, SOLOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NG, Wartini et al. Estimation of effective calibration sample size using visible near infrared spectroscopy: deep learning vs machine learning. Soil Discussions, v. 6, p. 565–578, 2020Tradução . . Disponível em: https://soil.copernicus.org/articles/6/565/2020/soil-6-565-2020.pdf. Acesso em: 08 out. 2025.
    • APA

      Ng, W., Minasny, B., Mendes, W. de S., & Dematte, J. A. M. (2020). Estimation of effective calibration sample size using visible near infrared spectroscopy: deep learning vs machine learning. Soil Discussions, 6, 565–578. doi:10.5194/soil-2019-48
    • NLM

      Ng W, Minasny B, Mendes W de S, Dematte JAM. Estimation of effective calibration sample size using visible near infrared spectroscopy: deep learning vs machine learning [Internet]. Soil Discussions. 2020 ; 6 565–578.[citado 2025 out. 08 ] Available from: https://soil.copernicus.org/articles/6/565/2020/soil-6-565-2020.pdf
    • Vancouver

      Ng W, Minasny B, Mendes W de S, Dematte JAM. Estimation of effective calibration sample size using visible near infrared spectroscopy: deep learning vs machine learning [Internet]. Soil Discussions. 2020 ; 6 565–578.[citado 2025 out. 08 ] Available from: https://soil.copernicus.org/articles/6/565/2020/soil-6-565-2020.pdf

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025