Filtros : "Falqui, Gregorio" "Indexado no Science Citation Index" Limpar

Filtros



Refine with date range


  • Source: Mathematical Physics, Analysis and Geometry. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, GEOMETRIA SIMPLÉTICA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio et al. Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, v. 23, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11040-020-09352-4. Acesso em: 31 out. 2024.
    • APA

      Falqui, G., Mencattini, I., Ortenzi, G., & Pedroni, M. (2020). Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, 23( 3), Se 2020. doi:10.1007/s11040-020-09352-4
    • NLM

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
    • Vancouver

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, GEOMETRIA, SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, v. 118, p. 126-137, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2016.04.023. Acesso em: 31 out. 2024.
    • APA

      Falqui, G., & Mencattini, I. (2017). Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, 118, 126-137. doi:10.1016/j.geomphys.2016.04.023
    • NLM

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
    • Vancouver

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024