Filtros : "PROCESSOS ESTOCÁSTICOS ESPECIAIS" "2001" Limpar

Filtros



Refine with date range


  • Source: Markov Processes Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Oswaldo Scarpa Magalhães et al. The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields, v. 7, n. 4, p. 525-539, 2001Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Alves, O. S. M., Machado, F. P., Popov, S. Y., & Ravishankar, K. (2001). The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields, 7( 4), 525-539.
    • NLM

      Alves OSM, Machado FP, Popov SY, Ravishankar K. The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields. 2001 ; 7( 4): 525-539.[citado 2025 nov. 09 ]
    • Vancouver

      Alves OSM, Machado FP, Popov SY, Ravishankar K. The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields. 2001 ; 7( 4): 525-539.[citado 2025 nov. 09 ]
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu. Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, v. 91, n. 1, p. 21-37, 2001Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00055-7. Acesso em: 09 nov. 2025.
    • APA

      Machado, F. P., Menshikov, M. V. 'evich, & Popov, S. Y. (2001). Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, 91( 1), 21-37. doi:10.1016/s0304-4149(00)00055-7
    • NLM

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
    • Vancouver

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
  • Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MEDEIROS, Deborah Pereira de e VACHKOVSKAIA, Marina. Time fluctuations of the Random average process with parabolic initial conditions. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/032dc010-4607-4964-a7b5-7edee46246f7/1235905.pdf. Acesso em: 09 nov. 2025. , 2001
    • APA

      Fontes, L. R., Medeiros, D. P. de, & Vachkovskaia, M. (2001). Time fluctuations of the Random average process with parabolic initial conditions. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/032dc010-4607-4964-a7b5-7edee46246f7/1235905.pdf
    • NLM

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the Random average process with parabolic initial conditions [Internet]. 2001 ;[citado 2025 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/032dc010-4607-4964-a7b5-7edee46246f7/1235905.pdf
    • Vancouver

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the Random average process with parabolic initial conditions [Internet]. 2001 ;[citado 2025 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/032dc010-4607-4964-a7b5-7edee46246f7/1235905.pdf
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, v. 119, n. 2, p. 176-186, 2001Tradução . . Disponível em: https://doi.org/10.1007/pl00008757. Acesso em: 09 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Vachkovskaia, M. (2001). On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, 119( 2), 176-186. doi:10.1007/pl00008757
    • NLM

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/pl00008757
    • Vancouver

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/pl00008757

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025