Filtros : "PROCESSOS ESTOCÁSTICOS ESPECIAIS" "Popov, Serguei Yu" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GANTERT, Nina e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. Survival time of random walk in random environment among soft obstacles. Electronic Journal of Probability, v. 14, n. paper 22, p. 569-593, 2009Tradução . . Disponível em: https://doi.org/10.1214/ejp.v14-631. Acesso em: 08 nov. 2025.
    • APA

      Gantert, N., Popov, S. Y., & Vachkovskaia, M. (2009). Survival time of random walk in random environment among soft obstacles. Electronic Journal of Probability, 14( paper 22), 569-593. doi:10.1214/ejp.v14-631
    • NLM

      Gantert N, Popov SY, Vachkovskaia M. Survival time of random walk in random environment among soft obstacles [Internet]. Electronic Journal of Probability. 2009 ; 14( paper 22): 569-593.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/ejp.v14-631
    • Vancouver

      Gantert N, Popov SY, Vachkovskaia M. Survival time of random walk in random environment among soft obstacles [Internet]. Electronic Journal of Probability. 2009 ; 14( paper 22): 569-593.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/ejp.v14-631
  • Source: Annals of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis e POPOV, Serguei Yu. Multidimensional branching random walks in random environment. Annals of Probability, v. 35, n. 1, p. 68-114, 2007Tradução . . Disponível em: https://doi.org/10.1214/009117906000000926. Acesso em: 08 nov. 2025.
    • APA

      Comets, F., & Popov, S. Y. (2007). Multidimensional branching random walks in random environment. Annals of Probability, 35( 1), 68-114. doi:10.1214/009117906000000926
    • NLM

      Comets F, Popov SY. Multidimensional branching random walks in random environment [Internet]. Annals of Probability. 2007 ; 35( 1): 68-114.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/009117906000000926
    • Vancouver

      Comets F, Popov SY. Multidimensional branching random walks in random environment [Internet]. Annals of Probability. 2007 ; 35( 1): 68-114.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/009117906000000926
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KURKOVA, Irina e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On infection spreading and competition between independent random walks. Electronic Journal of Probability, v. 9, p. 293-315, 2004Tradução . . Disponível em: https://doi.org/10.1214/EJP.v9-197. Acesso em: 08 nov. 2025.
    • APA

      Kurkova, I., Popov, S. Y., & Vachkovskaia, M. (2004). On infection spreading and competition between independent random walks. Electronic Journal of Probability, 9, 293-315. doi:10.1214/EJP.v9-197
    • NLM

      Kurkova I, Popov SY, Vachkovskaia M. On infection spreading and competition between independent random walks [Internet]. Electronic Journal of Probability. 2004 ; 9 293-315.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/EJP.v9-197
    • Vancouver

      Kurkova I, Popov SY, Vachkovskaia M. On infection spreading and competition between independent random walks [Internet]. Electronic Journal of Probability. 2004 ; 9 293-315.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/EJP.v9-197
  • Source: Markov Processes and Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich et al. On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields, v. 10, n. 1, p. 137-160, 2004Tradução . . Acesso em: 08 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., Sisko, V., & Vachkovskaia, M. (2004). On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields, 10( 1), 137-160.
    • NLM

      Menshikov MV'evich, Popov SY, Sisko V, Vachkovskaia M. On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields. 2004 ; 10( 1): 137-160.[citado 2025 nov. 08 ]
    • Vancouver

      Menshikov MV'evich, Popov SY, Sisko V, Vachkovskaia M. On a many-dimensional random walk in a rarefied random environment. Markov Processes and Related Fields. 2004 ; 10( 1): 137-160.[citado 2025 nov. 08 ]
  • Source: ESAIM: Probability and Statistics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis M. e POPOV, Serguei Yu. A note on quenched moderate deviations for Sinai's random walk in random environment. ESAIM: Probability and Statistics, v. 8, p. 56-65, 2004Tradução . . Disponível em: https://doi.org/10.1051/ps:2004001. Acesso em: 08 nov. 2025.
    • APA

      Comets, F. M., & Popov, S. Y. (2004). A note on quenched moderate deviations for Sinai's random walk in random environment. ESAIM: Probability and Statistics, 8, 56-65. doi:10.1051/ps:2004001
    • NLM

      Comets FM, Popov SY. A note on quenched moderate deviations for Sinai's random walk in random environment [Internet]. ESAIM: Probability and Statistics. 2004 ; 8 56-65.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1051/ps:2004001
    • Vancouver

      Comets FM, Popov SY. A note on quenched moderate deviations for Sinai's random walk in random environment [Internet]. ESAIM: Probability and Statistics. 2004 ; 8 56-65.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1051/ps:2004001
  • Source: Stochastic Processes and Their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e POPOV, Serguei Yu. Branching random walk in random environment on trees. Stochastic Processes and Their Applications, v. 106, n. 1, p. 95-106, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(03)00039-5. Acesso em: 08 nov. 2025.
    • APA

      Machado, F. P., & Popov, S. Y. (2003). Branching random walk in random environment on trees. Stochastic Processes and Their Applications, 106( 1), 95-106. doi:10.1016/s0304-4149(03)00039-5
    • NLM

      Machado FP, Popov SY. Branching random walk in random environment on trees [Internet]. Stochastic Processes and Their Applications. 2003 ; 106( 1): 95-106.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/s0304-4149(03)00039-5
    • Vancouver

      Machado FP, Popov SY. Branching random walk in random environment on trees [Internet]. Stochastic Processes and Their Applications. 2003 ; 106( 1): 95-106.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/s0304-4149(03)00039-5
  • Source: Annals of Applied Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Oswaldo Scarpa Magalhães e MACHADO, Fábio Prates e POPOV, Serguei Yu. The shape theorem for the frog model. Annals of Applied Probability, v. 12, n. 2, p. 533-546, 2002Tradução . . Disponível em: https://doi.org/10.1214/aoap/1026915614. Acesso em: 08 nov. 2025.
    • APA

      Alves, O. S. M., Machado, F. P., & Popov, S. Y. (2002). The shape theorem for the frog model. Annals of Applied Probability, 12( 2), 533-546. doi:10.1214/aoap/1026915614
    • NLM

      Alves OSM, Machado FP, Popov SY. The shape theorem for the frog model [Internet]. Annals of Applied Probability. 2002 ; 12( 2): 533-546.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/aoap/1026915614
    • Vancouver

      Alves OSM, Machado FP, Popov SY. The shape theorem for the frog model [Internet]. Annals of Applied Probability. 2002 ; 12( 2): 533-546.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/aoap/1026915614
  • Source: Journal of Theoretical Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e SISKO, V. V. On the connection between oriented percolation and contact process. Journal of Theoretical Probability, v. 15, n. 1, p. 207-221, 2002Tradução . . Disponível em: https://doi.org/10.1023/A:1013847619585. Acesso em: 08 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Sisko, V. V. (2002). On the connection between oriented percolation and contact process. Journal of Theoretical Probability, 15( 1), 207-221. doi:10.1023/A:1013847619585
    • NLM

      Menshikov MV'evich, Popov SY, Sisko VV. On the connection between oriented percolation and contact process [Internet]. Journal of Theoretical Probability. 2002 ; 15( 1): 207-221.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1013847619585
    • Vancouver

      Menshikov MV'evich, Popov SY, Sisko VV. On the connection between oriented percolation and contact process [Internet]. Journal of Theoretical Probability. 2002 ; 15( 1): 207-221.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1013847619585
  • Source: Markov Processes Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Oswaldo Scarpa Magalhães et al. The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields, v. 7, n. 4, p. 525-539, 2001Tradução . . Acesso em: 08 nov. 2025.
    • APA

      Alves, O. S. M., Machado, F. P., Popov, S. Y., & Ravishankar, K. (2001). The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields, 7( 4), 525-539.
    • NLM

      Alves OSM, Machado FP, Popov SY, Ravishankar K. The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields. 2001 ; 7( 4): 525-539.[citado 2025 nov. 08 ]
    • Vancouver

      Alves OSM, Machado FP, Popov SY, Ravishankar K. The shape theorem for the frog model with random initial configuration. Markov Processes Related Fields. 2001 ; 7( 4): 525-539.[citado 2025 nov. 08 ]
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu. Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, v. 91, n. 1, p. 21-37, 2001Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00055-7. Acesso em: 08 nov. 2025.
    • APA

      Machado, F. P., Menshikov, M. V. 'evich, & Popov, S. Y. (2001). Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, 91( 1), 21-37. doi:10.1016/s0304-4149(00)00055-7
    • NLM

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
    • Vancouver

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, v. 119, n. 2, p. 176-186, 2001Tradução . . Disponível em: https://doi.org/10.1007/pl00008757. Acesso em: 08 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Vachkovskaia, M. (2001). On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, 119( 2), 176-186. doi:10.1007/pl00008757
    • NLM

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/pl00008757
    • Vancouver

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/pl00008757
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEN HOLLANDER, Frank e MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu. A note on transience versus recurrence for a branching random walk in random environment. Journal of Statistical Physics, v. 95, n. 3/4, p. 587-614, 1999Tradução . . Disponível em: https://doi.org/10.1023/A:1004539225064. Acesso em: 08 nov. 2025.
    • APA

      Den Hollander, F., Menshikov, M. V. 'evich, & Popov, S. Y. (1999). A note on transience versus recurrence for a branching random walk in random environment. Journal of Statistical Physics, 95( 3/4), 587-614. doi:10.1023/A:1004539225064
    • NLM

      Den Hollander F, Menshikov MV'evich, Popov SY. A note on transience versus recurrence for a branching random walk in random environment [Internet]. Journal of Statistical Physics. 1999 ; 95( 3/4): 587-614.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1004539225064
    • Vancouver

      Den Hollander F, Menshikov MV'evich, Popov SY. A note on transience versus recurrence for a branching random walk in random environment [Internet]. Journal of Statistical Physics. 1999 ; 95( 3/4): 587-614.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1004539225064

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025