Filtros : "PROCESSOS ESTOCÁSTICOS ESPECIAIS" "PROCESSOS DE CONTATO" Limpar

Filtros



Refine with date range


  • Source: Annals of Probability. Unidade: IME

    Subjects: PROCESSOS DE CONTATO, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DURRETT, Richard e SCHONMANN, Roberto Henrique. The contact process on a finite set II. Annals of Probability, v. 16, n. 4 , p. 1570-1583, 1988Tradução . . Disponível em: https://doi.org/10.1214/aop/1176991584. Acesso em: 08 nov. 2025.
    • APA

      Durrett, R., & Schonmann, R. H. (1988). The contact process on a finite set II. Annals of Probability, 16( 4 ), 1570-1583. doi:10.1214/aop/1176991584
    • NLM

      Durrett R, Schonmann RH. The contact process on a finite set II [Internet]. Annals of Probability. 1988 ; 16( 4 ): 1570-1583.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/aop/1176991584
    • Vancouver

      Durrett R, Schonmann RH. The contact process on a finite set II [Internet]. Annals of Probability. 1988 ; 16( 4 ): 1570-1583.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/aop/1176991584
  • Unidade: IME

    Subjects: PROCESSOS DE CONTATO, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DURRETT, Richard e SCHONMANN, Roberto Henrique e TANAKA, Nelson Ithiro. Contact process on a finite set III: the critical case. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/317363ec-3915-4192-950e-27c645c22992/780352.pdf. Acesso em: 08 nov. 2025. , 1988
    • APA

      Durrett, R., Schonmann, R. H., & Tanaka, N. I. (1988). Contact process on a finite set III: the critical case. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/317363ec-3915-4192-950e-27c645c22992/780352.pdf
    • NLM

      Durrett R, Schonmann RH, Tanaka NI. Contact process on a finite set III: the critical case [Internet]. 1988 ;[citado 2025 nov. 08 ] Available from: https://repositorio.usp.br/directbitstream/317363ec-3915-4192-950e-27c645c22992/780352.pdf
    • Vancouver

      Durrett R, Schonmann RH, Tanaka NI. Contact process on a finite set III: the critical case [Internet]. 1988 ;[citado 2025 nov. 08 ] Available from: https://repositorio.usp.br/directbitstream/317363ec-3915-4192-950e-27c645c22992/780352.pdf
  • Source: Annals of Probability. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, SISTEMAS MARKOVIANOS DE PARTÍCULAS, PROCESSOS DE CONTATO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. A new proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter. Annals of Probability, v. 15, n. 1, p. 382-387, 1987Tradução . . Disponível em: https://doi.org/10.1214/aop/1176992276. Acesso em: 08 nov. 2025.
    • APA

      Schonmann, R. H. (1987). A new proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter. Annals of Probability, 15( 1), 382-387. doi:10.1214/aop/1176992276
    • NLM

      Schonmann RH. A new proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter [Internet]. Annals of Probability. 1987 ; 15( 1): 382-387.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/aop/1176992276
    • Vancouver

      Schonmann RH. A new proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter [Internet]. Annals of Probability. 1987 ; 15( 1): 382-387.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214/aop/1176992276
  • Source: Annals of Probability. Unidade: IME

    Subjects: TEOREMAS LIMITES, PROCESSOS DE CONTATO, PROCESSOS ESTOCÁSTICOS ESPECIAIS, SISTEMAS MARKOVIANOS DE PARTÍCULAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. Central limit theorem for the contact process. Annals of Probability, v. 14, n. 4 , p. 1291-1295, 1986Tradução . . Disponível em: https://doi.org/10.1214%2Faop%2F1176992370. Acesso em: 08 nov. 2025.
    • APA

      Schonmann, R. H. (1986). Central limit theorem for the contact process. Annals of Probability, 14( 4 ), 1291-1295. doi:10.1214%2Faop%2F1176992370
    • NLM

      Schonmann RH. Central limit theorem for the contact process [Internet]. Annals of Probability. 1986 ; 14( 4 ): 1291-1295.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214%2Faop%2F1176992370
    • Vancouver

      Schonmann RH. Central limit theorem for the contact process [Internet]. Annals of Probability. 1986 ; 14( 4 ): 1291-1295.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1214%2Faop%2F1176992370
  • Unidade: IME

    Subjects: SISTEMAS MARKOVIANOS DE PARTÍCULAS, PROCESSOS DE CONTATO, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. New proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter. . São Paulo: IME-USP. . Acesso em: 08 nov. 2025. , 1985
    • APA

      Schonmann, R. H. (1985). New proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter. São Paulo: IME-USP.
    • NLM

      Schonmann RH. New proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter. 1985 ;[citado 2025 nov. 08 ]
    • Vancouver

      Schonmann RH. New proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter. 1985 ;[citado 2025 nov. 08 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025