Filtros : "Topological Methods in Nonlinear Analysis" "Topological Methods in Nonlinear Analysis" Removido: "ICMC-SMA" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: PROBLEMAS VARIACIONAIS, PROBLEMAS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORONA, Dario et al. On the relative category in the brake orbits problem. Topological Methods in Nonlinear Analysis, v. 61, n. 1, p. 199-215, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.057. Acesso em: 29 nov. 2025.
    • APA

      Corona, D., Giambó, R., Giannoni, F., & Piccione, P. (2023). On the relative category in the brake orbits problem. Topological Methods in Nonlinear Analysis, 61( 1), 199-215. doi:10.12775/TMNA.2022.057
    • NLM

      Corona D, Giambó R, Giannoni F, Piccione P. On the relative category in the brake orbits problem [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 199-215.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2022.057
    • Vancouver

      Corona D, Giambó R, Giannoni F, Piccione P. On the relative category in the brake orbits problem [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 199-215.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2022.057
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: GEOMETRIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROWN, Robert F. e GONÇALVES, Daciberg Lima. Lift factors for the Nielsen root theory on n-valued maps. Topological Methods in Nonlinear Analysis, v. 61, n. 1, p. 269–289, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.017. Acesso em: 29 nov. 2025.
    • APA

      Brown, R. F., & Gonçalves, D. L. (2023). Lift factors for the Nielsen root theory on n-valued maps. Topological Methods in Nonlinear Analysis, 61( 1), 269–289. doi:10.12775/TMNA.2022.017
    • NLM

      Brown RF, Gonçalves DL. Lift factors for the Nielsen root theory on n-valued maps [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 269–289.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2022.017
    • Vancouver

      Brown RF, Gonçalves DL. Lift factors for the Nielsen root theory on n-valued maps [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 269–289.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2022.017
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 29 nov. 2025.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: AUTOVALORES E AUTOVETORES, TEORIA ESPECTRAL, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 499-523, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.006. Acesso em: 29 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, 59( 2A), 499-523. doi:10.12775/TMNA.2021.006
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.006
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.006
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 29 nov. 2025.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Source: Topological Methods in Nonlinear Analysis. Unidades: IME, ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS-PARABÓLICAS QUASILINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, v. 58, n. 1, p. 209-231, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.009. Acesso em: 29 nov. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2021). A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, 58( 1), 209-231. doi:10.12775/TMNA.2021.009
    • NLM

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.009
    • Vancouver

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.009
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANTOS, Anderson Paião dos e SILVA, Weslem Liberato. The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, v. 58, n. 2, p. 367-388, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.020. Acesso em: 29 nov. 2025.
    • APA

      Gonçalves, D. L., Santos, A. P. dos, & Silva, W. L. (2021). The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, 58( 2), 367-388. doi:10.12775/TMNA.2021.020
    • NLM

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.020
    • Vancouver

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2021.020
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ESPAÇOS FIBRADOS, ROBÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAPATA, Cesar Augusto Ipanaque e GONZÁLEZ, Jesús. Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 559-578, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.033. Acesso em: 29 nov. 2025.
    • APA

      Zapata, C. A. I., & González, J. (2020). Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, 56( 2), 559-578. doi:10.12775/TMNA.2020.033
    • NLM

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.033
    • Vancouver

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.033
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, Michael R. Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 457-472, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.054. Acesso em: 29 nov. 2025.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2020). Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, 56( 2), 457-472. doi:10.12775/TMNA.2020.054
    • NLM

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.054
    • Vancouver

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.054
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: HOMOTOPIA, HOMOLOGIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 473-482, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.056. Acesso em: 29 nov. 2025.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2020). Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, 56( 2), 473-482. doi:10.12775/TMNA.2020.056
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.056
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.056
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES, TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, v. 55, n. 1, p. 169-184, 2020Tradução . . Disponível em: https://doi.org/10.12775/tmna.2019.093. Acesso em: 29 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, 55( 1), 169-184. doi:10.12775/tmna.2019.093
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/tmna.2019.093
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/tmna.2019.093
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 29 nov. 2025.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ESTABILIDADE DE LIAPUNOV, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e SOUTO, Ginnara M. On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 127-150, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.042. Acesso em: 29 nov. 2025.
    • APA

      Bonotto, E. de M., & Souto, G. M. (2019). On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, 53( 1), 127-150. doi:10.12775/TMNA.2018.042
    • NLM

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2018.042
    • Vancouver

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2018.042
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES INTEGRO-DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, ESTABILIDADE DE LIAPUNOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio da e PEREIRA, Antônio Luiz. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, v. 51, n. 2, p. 583-598, 2018Tradução . . Disponível em: https://doi.org/10.12775/tmna.2018.004. Acesso em: 29 nov. 2025.
    • APA

      Silva, S. H. da, & Pereira, A. L. (2018). A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, 51( 2), 583-598. doi:10.12775/tmna.2018.004
    • NLM

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/tmna.2018.004
    • Vancouver

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/tmna.2018.004
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e GIMENES, Luciene P. e SOUTO, Ginnara M. Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, v. 49, n. 1, p. 133-163, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2016.065. Acesso em: 29 nov. 2025.
    • APA

      Bonotto, E. de M., Gimenes, L. P., & Souto, G. M. (2017). Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, 49( 1), 133-163. doi:10.12775/TMNA.2016.065
    • NLM

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2016.065
    • Vancouver

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2016.065
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS ABELIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEKIMPE, Karel e GONÇALVES, Daciberg Lima. The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 773-784, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.066. Acesso em: 29 nov. 2025.
    • APA

      Dekimpe, K., & Gonçalves, D. L. (2015). The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, 46( 2), 773-784. doi:10.12775/TMNA.2015.066
    • NLM

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2015.066
    • Vancouver

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2015.066
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: GRAU TOPOLÓGICO, ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e FURI, Massimo. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 401-430, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.052. Acesso em: 29 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., & Furi, M. (2015). On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, 46( 1), 401-430. doi:10.12775/TMNA.2015.052
    • NLM

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2015.052
    • Vancouver

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2015.052
  • Source: Topological Methods in Nonlinear Analysis. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e PIERRI, Michelle e O'REGAN, Donal. On abstract differential equations with non instantaneous impulses. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 1067-1088, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.080. Acesso em: 29 nov. 2025.
    • APA

      Hernandez, E., Pierri, M., & O'Regan, D. (2015). On abstract differential equations with non instantaneous impulses. Topological Methods in Nonlinear Analysis, 46( 2), 1067-1088. doi:10.12775/TMNA.2015.080
    • NLM

      Hernandez E, Pierri M, O'Regan D. On abstract differential equations with non instantaneous impulses [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 1067-1088.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2015.080
    • Vancouver

      Hernandez E, Pierri M, O'Regan D. On abstract differential equations with non instantaneous impulses [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 1067-1088.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/TMNA.2015.080
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e JIMENEZ, Manuel Francisco Zuloeta. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, v. 44, n. 1, p. 121-141, 2014Tradução . . Disponível em: https://doi.org/10.12775/tmna.2014.039. Acesso em: 29 nov. 2025.
    • APA

      Bonotto, E. de M., & Jimenez, M. F. Z. (2014). On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, 44( 1), 121-141. doi:10.12775/tmna.2014.039
    • NLM

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/tmna.2014.039
    • Vancouver

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2025 nov. 29 ] Available from: https://doi.org/10.12775/tmna.2014.039
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS, SISTEMAS DISSIPATIVO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela P. Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, v. 41, n. 1, p. 1-38, 2013Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1461253854. Acesso em: 29 nov. 2025.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2013). Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, 41( 1), 1-38. Recuperado de https://projecteuclid.org/euclid.tmna/1461253854
    • NLM

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2025 nov. 29 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854
    • Vancouver

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2025 nov. 29 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025