Filtros : "Results in Mathematics" "ICMC" Limpar

Filtros



Limitar por data


  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS HIPOELÍTICAS, ANÁLISE DE FOURIER, ANÁLISE HARMÔNICA EM GRUPOS DE LIE, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e KIRILOV, Alexandre e SILVA, Ricardo Paleari. Diagonal systems of differential operators on compact Lie groups. Results in Mathematics, v. 80, n. 6, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00025-025-02506-2. Acesso em: 18 nov. 2025.
    • APA

      Dattori da Silva, P. L., Kirilov, A., & Silva, R. P. (2025). Diagonal systems of differential operators on compact Lie groups. Results in Mathematics, 80( 6), 1-25. doi:10.1007/s00025-025-02506-2
    • NLM

      Dattori da Silva PL, Kirilov A, Silva RP. Diagonal systems of differential operators on compact Lie groups [Internet]. Results in Mathematics. 2025 ; 80( 6): 1-25.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-025-02506-2
    • Vancouver

      Dattori da Silva PL, Kirilov A, Silva RP. Diagonal systems of differential operators on compact Lie groups [Internet]. Results in Mathematics. 2025 ; 80( 6): 1-25.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-025-02506-2
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assunto: SINGULARIDADES

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIVIÀ-AUSINA, Carles e KOURLIOUROS, Konstantinos e RUAS, Maria Aparecida Soares. Modules of derivations, logarithmic ideals and singularities of maps on analytic varieties. Results in Mathematics, v. 80, p. 1-35, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00025-025-02427-0. Acesso em: 18 nov. 2025.
    • APA

      Bivià-Ausina, C., Kourliouros, K., & Ruas, M. A. S. (2025). Modules of derivations, logarithmic ideals and singularities of maps on analytic varieties. Results in Mathematics, 80, 1-35. doi:10.1007/s00025-025-02427-0
    • NLM

      Bivià-Ausina C, Kourliouros K, Ruas MAS. Modules of derivations, logarithmic ideals and singularities of maps on analytic varieties [Internet]. Results in Mathematics. 2025 ; 80 1-35.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-025-02427-0
    • Vancouver

      Bivià-Ausina C, Kourliouros K, Ruas MAS. Modules of derivations, logarithmic ideals and singularities of maps on analytic varieties [Internet]. Results in Mathematics. 2025 ; 80 1-35.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-025-02427-0
  • Fonte: Results in Mathematics. Unidades: ICMC, IME

    Assuntos: ANÁLISE FUNCIONAL, INTERPOLAÇÃO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTILLO, Jesús M. F et al. Interpolator symmetries and new Kalton-Peck spaces. Results in Mathematics, v. 79, n. artigo 108, p. 1-28, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00025-024-02128-0. Acesso em: 18 nov. 2025.
    • APA

      Castillo, J. M. F., Corrêa, W. H. G., Ferenczi, V., & González, M. (2024). Interpolator symmetries and new Kalton-Peck spaces. Results in Mathematics, 79( artigo 108), 1-28. doi:10.1007/s00025-024-02128-0
    • NLM

      Castillo JMF, Corrêa WHG, Ferenczi V, González M. Interpolator symmetries and new Kalton-Peck spaces [Internet]. Results in Mathematics. 2024 ; 79( artigo 108): 1-28.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-024-02128-0
    • Vancouver

      Castillo JMF, Corrêa WHG, Ferenczi V, González M. Interpolator symmetries and new Kalton-Peck spaces [Internet]. Results in Mathematics. 2024 ; 79( artigo 108): 1-28.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-024-02128-0
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL CLÁSSICA, SUPERFÍCIES MÍNIMAS, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBIERI, Aires Eduardo Menani. Helicoidal surfaces of prescribed mean curvature in R³. Results in Mathematics, v. No 2024, n. 7, p. 1-32, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00025-024-02283-4. Acesso em: 18 nov. 2025.
    • APA

      Barbieri, A. E. M. (2024). Helicoidal surfaces of prescribed mean curvature in R³. Results in Mathematics, No 2024( 7), 1-32. doi:10.1007/s00025-024-02283-4
    • NLM

      Barbieri AEM. Helicoidal surfaces of prescribed mean curvature in R³ [Internet]. Results in Mathematics. 2024 ; No 2024( 7): 1-32.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-024-02283-4
    • Vancouver

      Barbieri AEM. Helicoidal surfaces of prescribed mean curvature in R³ [Internet]. Results in Mathematics. 2024 ; No 2024( 7): 1-32.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-024-02283-4
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL CLÁSSICA, INVARIANTES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDINA-TEJEDA, Tito Alexandre. Some classes of frontals and its representation formulas. Results in Mathematics, v. 79, n. 5, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00025-024-02221-4. Acesso em: 18 nov. 2025.
    • APA

      Medina-Tejeda, T. A. (2024). Some classes of frontals and its representation formulas. Results in Mathematics, 79( 5), 1-27. doi:10.1007/s00025-024-02221-4
    • NLM

      Medina-Tejeda TA. Some classes of frontals and its representation formulas [Internet]. Results in Mathematics. 2024 ; 79( 5): 1-27.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-024-02221-4
    • Vancouver

      Medina-Tejeda TA. Some classes of frontals and its representation formulas [Internet]. Results in Mathematics. 2024 ; 79( 5): 1-27.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-024-02221-4
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, v. 78, n. 6, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00025-023-01999-z. Acesso em: 18 nov. 2025.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M. J. M. da, & Takaessu Junior, C. R. (2023). A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, 78( 6), 1-14. doi:10.1007/s00025-023-01999-z
    • NLM

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
    • Vancouver

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: OPERADORES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANA, Camilo e DATTORI DA SILVA, Paulo Leandro. Solvability in the large and boundary value problems for Mizohata type operators. Results in Mathematics, v. 77, n. 2, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00025-021-01568-2. Acesso em: 18 nov. 2025.
    • APA

      Campana, C., & Dattori da Silva, P. L. (2022). Solvability in the large and boundary value problems for Mizohata type operators. Results in Mathematics, 77( 2), 1-26. doi:10.1007/s00025-021-01568-2
    • NLM

      Campana C, Dattori da Silva PL. Solvability in the large and boundary value problems for Mizohata type operators [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-26.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-021-01568-2
    • Vancouver

      Campana C, Dattori da Silva PL. Solvability in the large and boundary value problems for Mizohata type operators [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-26.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-021-01568-2
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões e MENEGATTO, Valdir Antônio. Gneiting's space-time positive definiteness criterion revisited. Results in Mathematics, v. 77, n. 2, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00025-022-01604-9. Acesso em: 18 nov. 2025.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2022). Gneiting's space-time positive definiteness criterion revisited. Results in Mathematics, 77( 2), 1-19. doi:10.1007/s00025-022-01604-9
    • NLM

      Barbosa VS, Menegatto VA. Gneiting's space-time positive definiteness criterion revisited [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-19.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-022-01604-9
    • Vancouver

      Barbosa VS, Menegatto VA. Gneiting's space-time positive definiteness criterion revisited [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-19.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-022-01604-9
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES RIEMANNIANAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Ronaldo Freire de e MANFIO, Fernando e SANTOS, João Paulo dos. Einstein hypersurfaces of warped product spaces. Results in Mathematics, v. 77, n. 6, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00025-022-01758-6. Acesso em: 18 nov. 2025.
    • APA

      Lima, R. F. de, Manfio, F., & Santos, J. P. dos. (2022). Einstein hypersurfaces of warped product spaces. Results in Mathematics, 77( 6), 1-26. doi:10.1007/s00025-022-01758-6
    • NLM

      Lima RF de, Manfio F, Santos JP dos. Einstein hypersurfaces of warped product spaces [Internet]. Results in Mathematics. 2022 ; 77( 6): 1-26.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-022-01758-6
    • Vancouver

      Lima RF de, Manfio F, Santos JP dos. Einstein hypersurfaces of warped product spaces [Internet]. Results in Mathematics. 2022 ; 77( 6): 1-26.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-022-01758-6
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, SOLUÇÕES PERIÓDICAS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Marcelo Fernandes de e DATTORI DA SILVA, Paulo Leandro. Solvability of a class of first order differential operators on the torus. Results in Mathematics, v. 76, n. 2, p. 1-17, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00025-021-01413-6. Acesso em: 18 nov. 2025.
    • APA

      Almeida, M. F. de, & Dattori da Silva, P. L. (2021). Solvability of a class of first order differential operators on the torus. Results in Mathematics, 76( 2), 1-17. doi:10.1007/s00025-021-01413-6
    • NLM

      Almeida MF de, Dattori da Silva PL. Solvability of a class of first order differential operators on the torus [Internet]. Results in Mathematics. 2021 ; 76( 2): 1-17.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-021-01413-6
    • Vancouver

      Almeida MF de, Dattori da Silva PL. Solvability of a class of first order differential operators on the torus [Internet]. Results in Mathematics. 2021 ; 76( 2): 1-17.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-021-01413-6
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: APROXIMAÇÃO, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, PROBLEMAS DE AUTOVALORES, OPERADORES INTEGRAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís e MENEGATTO, Valdir Antônio. Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators. Results in Mathematics, v. 74, n. 2, p. 1-18, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00025-019-1000-4. Acesso em: 18 nov. 2025.
    • APA

      Jordão, T., & Menegatto, V. A. (2019). Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators. Results in Mathematics, 74( 2), 1-18. doi:10.1007/s00025-019-1000-4
    • NLM

      Jordão T, Menegatto VA. Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators [Internet]. Results in Mathematics. 2019 ; 74( 2): 1-18.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-019-1000-4
    • Vancouver

      Jordão T, Menegatto VA. Kolmogorov widths on the sphere via eigenvalue estimates for Hölderian integral operators [Internet]. Results in Mathematics. 2019 ; 74( 2): 1-18.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-019-1000-4
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL AFIM, GEOMETRIA DIFERENCIAL CLÁSSICA, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NUÑO-BALLESTEROS, Juan J e SAIA, Marcelo José e SÁNCHEZ, Luis F. Affine focal points for locally strictly convex surfaces in 4-space. Results in Mathematics, v. 71, n. 1, p. 357-376, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00025-016-0606-z. Acesso em: 18 nov. 2025.
    • APA

      Nuño-Ballesteros, J. J., Saia, M. J., & Sánchez, L. F. (2017). Affine focal points for locally strictly convex surfaces in 4-space. Results in Mathematics, 71( 1), 357-376. doi:10.1007/s00025-016-0606-z
    • NLM

      Nuño-Ballesteros JJ, Saia MJ, Sánchez LF. Affine focal points for locally strictly convex surfaces in 4-space [Internet]. Results in Mathematics. 2017 ; 71( 1): 357-376.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-016-0606-z
    • Vancouver

      Nuño-Ballesteros JJ, Saia MJ, Sánchez LF. Affine focal points for locally strictly convex surfaces in 4-space [Internet]. Results in Mathematics. 2017 ; 71( 1): 357-376.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1007/s00025-016-0606-z

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025