Filtros : "Journal of Chemical Information and Modeling" "2021" Removido: "IFSC" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQ

    Assuntos: ELÉTRONS, PEPTÍDEOS, PROTEÍNAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMILO, Sofia Rodrigues Guedes et al. Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1. Journal of Chemical Information and Modeling, v. 61, p. 1840−1849, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00008. Acesso em: 22 nov. 2025.
    • APA

      Camilo, S. R. G., Curtolo, F., Galassi, V. V., & Arantes, G. M. (2021). Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1. Journal of Chemical Information and Modeling, 61, 1840−1849. doi:10.1021/acs.jcim.1c00008
    • NLM

      Camilo SRG, Curtolo F, Galassi VV, Arantes GM. Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1840−1849.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00008
    • Vancouver

      Camilo SRG, Curtolo F, Galassi VV, Arantes GM. Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1840−1849.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00008
  • Fonte: Journal of Chemical Information and Modeling. Unidades: FCFRP, Interunidades em Bioinformática

    Assuntos: ZIKA VÍRUS, VIRULÊNCIA, FLAVIVIRUS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POVEDA CUEVAS, Sergio Alejandro e SILVA, Fernando Luís Barroso da e ETCHEBEST, Catherine. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence. Journal of Chemical Information and Modeling, v. 61, n. 3, p. 1516-1530, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01377. Acesso em: 22 nov. 2025.
    • APA

      Poveda Cuevas, S. A., Silva, F. L. B. da, & Etchebest, C. (2021). How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence. Journal of Chemical Information and Modeling, 61( 3), 1516-1530. doi:10.1021/acs.jcim.0c01377
    • NLM

      Poveda Cuevas SA, Silva FLB da, Etchebest C. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 3): 1516-1530.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.0c01377
    • Vancouver

      Poveda Cuevas SA, Silva FLB da, Etchebest C. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 3): 1516-1530.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.0c01377
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: METAIS, ADSORÇÃO, FÍSICO-QUÍMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Krys E. A. et al. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, v. 61, n. 5, p. 2294–2301, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00097. Acesso em: 22 nov. 2025.
    • APA

      Batista, K. E. A., Soares, M. D., Quiles, M. G., Piotrowski, M. J., & Da Silva, J. L. F. (2021). Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, 61( 5), 2294–2301. doi:10.1021/acs.jcim.1c00097
    • NLM

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
    • Vancouver

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, ALGORITMOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Luis Cesar de et al. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, v. 61, p. 4210−4223, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00503. Acesso em: 22 nov. 2025.
    • APA

      Azevedo, L. C. de, Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Prati, R. C. (2021). Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, 61, 4210−4223. doi:10.1021/acs.jcim.1c00503
    • NLM

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
    • Vancouver

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FCFRP

    Assuntos: PRODUTOS NATURAIS, METABÓLITOS SECUNDÁRIOS, FÁRMACOS, BANCO DE DADOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Renan P. O. et al. The SistematX web portal of natural products: an update. Journal of Chemical Information and Modeling, v. 61, n. 6, p. 2516-2522, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00083. Acesso em: 22 nov. 2025.
    • APA

      Costa, R. P. O., Lucena, L. F., Silva, L. M. A., Zocolo, G. J., Herrera-Acevedo, C., Scotti, L., et al. (2021). The SistematX web portal of natural products: an update. Journal of Chemical Information and Modeling, 61( 6), 2516-2522. doi:10.1021/acs.jcim.1c00083
    • NLM

      Costa RPO, Lucena LF, Silva LMA, Zocolo GJ, Herrera-Acevedo C, Scotti L, Costa FB da, Ionov N, Poroikov V, Muratov EN, Scotti MT. The SistematX web portal of natural products: an update [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2516-2522.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00083
    • Vancouver

      Costa RPO, Lucena LF, Silva LMA, Zocolo GJ, Herrera-Acevedo C, Scotti L, Costa FB da, Ionov N, Poroikov V, Muratov EN, Scotti MT. The SistematX web portal of natural products: an update [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2516-2522.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00083
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, MINERAÇÃO DE DADOS, FRAMEWORKS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUCELINI, Johnatan et al. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, v. 61, p. 1125-1135, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01267. Acesso em: 22 nov. 2025.
    • APA

      Mucelini, J., Quiles, M. G., Prati, R. C., & Silva, J. L. F. da. (2021). Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, 61, 1125-1135. doi:10.1021/acs.jcim.0c01267
    • NLM

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
    • Vancouver

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: MEDICAMENTO, ENZIMAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONATTO, Vinícius et al. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. Journal of Chemical Information and Modeling, v. 61, p. 4733−4744, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00515. Acesso em: 22 nov. 2025.
    • APA

      Bonatto, V., Shamim, A., Rocho, F. dos R., Leitão, A., Luque, F. J., & Montanari, C. A. (2021). Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. Journal of Chemical Information and Modeling, 61, 4733−4744. doi:10.1021/acs.jcim.1c00515
    • NLM

      Bonatto V, Shamim A, Rocho F dos R, Leitão A, Luque FJ, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4733−4744.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00515
    • Vancouver

      Bonatto V, Shamim A, Rocho F dos R, Leitão A, Luque FJ, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4733−4744.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1021/acs.jcim.1c00515

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025