Filtros : "Differential Geometry and its Applications" "Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)" Removido: "2000" Limpar

Filtros



Limitar por data


  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REI FILHO, Carlos Gonçalves do e TOJEIRO, Ruy. Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, v. 61, p. 133-146, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2018.08.002. Acesso em: 24 nov. 2025.
    • APA

      Rei Filho, C. G. do, & Tojeiro, R. (2018). Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, 61, 133-146. doi:10.1016/j.difgeo.2018.08.002
    • NLM

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
    • Vancouver

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e BRIQUET, Rafael e TOBEN, Dirk. Progress in the theory of singular Riemannian foliations. Differential Geometry and its Applications, v. 31, n. 2, p. 248-267, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2013.01.004. Acesso em: 24 nov. 2025.
    • APA

      Alexandrino, M. M., Briquet, R., & Toben, D. (2013). Progress in the theory of singular Riemannian foliations. Differential Geometry and its Applications, 31( 2), 248-267. doi:10.1016/j.difgeo.2013.01.004
    • NLM

      Alexandrino MM, Briquet R, Toben D. Progress in the theory of singular Riemannian foliations [Internet]. Differential Geometry and its Applications. 2013 ; 31( 2): 248-267.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.difgeo.2013.01.004
    • Vancouver

      Alexandrino MM, Briquet R, Toben D. Progress in the theory of singular Riemannian foliations [Internet]. Differential Geometry and its Applications. 2013 ; 31( 2): 248-267.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.difgeo.2013.01.004
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORRELLI, Vincent e GORODSKI, Claudio. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, v. 21, n. 3, p. 337-347, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2004.05.007. Acesso em: 24 nov. 2025.
    • APA

      Borrelli, V., & Gorodski, C. (2004). Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, 21( 3), 337-347. doi:10.1016/j.difgeo.2004.05.007
    • NLM

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007
    • Vancouver

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025