Filtros : "Financiamento PROEX/CAPES" "ATRATORES" Removido: "Communications in Nonlinear Science and Numerical Simulation" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUACCHA-NEYRA, Jackeline et al. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129332. Acesso em: 20 nov. 2025.
    • APA

      Huaccha-Neyra, J., López-Lázaro, H., Rubio, O., & Takaessu Junior, C. R. (2025). Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, 547( 2), 1-30. doi:10.1016/j.jmaa.2025.129332
    • NLM

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
    • Vancouver

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 20 nov. 2025.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, v. No 2022, n. 7, p. 2240024-1-2240024-28, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021949372240024X. Acesso em: 20 nov. 2025.
    • APA

      Caraballo, T., Langa, J. A., Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2022). Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, No 2022( 7), 2240024-1-2240024-28. doi:10.1142/S021949372240024X
    • NLM

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1142/S021949372240024X
    • Vancouver

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1142/S021949372240024X
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, v. No 2021, p. 312-336, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.07.044. Acesso em: 20 nov. 2025.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025