Filtros : "TEORIA ERGÓDICA" "2005" Removido: "Discrete and Continuous Dynamical Systems" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Vitor e TAHZIBI, Ali. Stochastic stability at the boundary of expanding maps. Nonlinearity, v. 18, p. 939-958, 2005Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/18/3/001. Acesso em: 28 nov. 2025.
    • APA

      Araujo, V., & Tahzibi, A. (2005). Stochastic stability at the boundary of expanding maps. Nonlinearity, 18, 939-958. doi:10.1088/0951-7715/18/3/001
    • NLM

      Araujo V, Tahzibi A. Stochastic stability at the boundary of expanding maps [Internet]. Nonlinearity. 2005 ; 18 939-958.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1088/0951-7715/18/3/001
    • Vancouver

      Araujo V, Tahzibi A. Stochastic stability at the boundary of expanding maps [Internet]. Nonlinearity. 2005 ; 18 939-958.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1088/0951-7715/18/3/001
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, VETORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIDALON, Carlos Teobaldo Gutierrez e PIRES, Benito. On Peixoto's conjecture for flows on non-orientable 2-manifolds. Proceedings of the American Mathematical Society, v. 133, n. 4, p. 1063-1074, 2005Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-04-07687-7. Acesso em: 28 nov. 2025.
    • APA

      Vidalon, C. T. G., & Pires, B. (2005). On Peixoto's conjecture for flows on non-orientable 2-manifolds. Proceedings of the American Mathematical Society, 133( 4), 1063-1074. doi:10.1090/S0002-9939-04-07687-7
    • NLM

      Vidalon CTG, Pires B. On Peixoto's conjecture for flows on non-orientable 2-manifolds [Internet]. Proceedings of the American Mathematical Society. 2005 ; 133( 4): 1063-1074.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1090/S0002-9939-04-07687-7
    • Vancouver

      Vidalon CTG, Pires B. On Peixoto's conjecture for flows on non-orientable 2-manifolds [Internet]. Proceedings of the American Mathematical Society. 2005 ; 133( 4): 1063-1074.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1090/S0002-9939-04-07687-7
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e PAUFLER, Cornelius e RÖMER, Hartmann. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory. Journal of Mathematical Physics, v. 46, n. 11, p. 1-29, 2005Tradução . . Disponível em: https://doi.org/10.1063/1.2116320. Acesso em: 28 nov. 2025.
    • APA

      Forger, F. M., Paufler, C., & Römer, H. (2005). Hamiltonian multivector fields and Poisson forms in multisymplectic field theory. Journal of Mathematical Physics, 46( 11), 1-29. doi:10.1063/1.2116320
    • NLM

      Forger FM, Paufler C, Römer H. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory [Internet]. Journal of Mathematical Physics. 2005 ; 46( 11): 1-29.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1063/1.2116320
    • Vancouver

      Forger FM, Paufler C, Römer H. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory [Internet]. Journal of Mathematical Physics. 2005 ; 46( 11): 1-29.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1063/1.2116320
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, André Salles de e LYUBICH, Mikhail e MARTENS, M. Renormalization in the Hénon family, I: universality but non-rigidity. Journal of Statistical Physics, v. 121, n. 5-6, p. 611-669, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10955-005-8668-4. Acesso em: 28 nov. 2025.
    • APA

      Carvalho, A. S. de, Lyubich, M., & Martens, M. (2005). Renormalization in the Hénon family, I: universality but non-rigidity. Journal of Statistical Physics, 121( 5-6), 611-669. doi:10.1007/s10955-005-8668-4
    • NLM

      Carvalho AS de, Lyubich M, Martens M. Renormalization in the Hénon family, I: universality but non-rigidity [Internet]. Journal of Statistical Physics. 2005 ; 121( 5-6): 611-669.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10955-005-8668-4
    • Vancouver

      Carvalho AS de, Lyubich M, Martens M. Renormalization in the Hénon family, I: universality but non-rigidity [Internet]. Journal of Statistical Physics. 2005 ; 121( 5-6): 611-669.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10955-005-8668-4
  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Phase space universality for multimodal maps. Bulletin of the Brazilian Mathematical Society, v. 36, n. 2, p. 225-274, 2005Tradução . . Disponível em: https://doi.org/10.1007/s00574-005-0038-y. Acesso em: 28 nov. 2025.
    • APA

      Smania, D. (2005). Phase space universality for multimodal maps. Bulletin of the Brazilian Mathematical Society, 36( 2), 225-274. doi:10.1007/s00574-005-0038-y
    • NLM

      Smania D. Phase space universality for multimodal maps [Internet]. Bulletin of the Brazilian Mathematical Society. 2005 ; 36( 2): 225-274.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00574-005-0038-y
    • Vancouver

      Smania D. Phase space universality for multimodal maps [Internet]. Bulletin of the Brazilian Mathematical Society. 2005 ; 36( 2): 225-274.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00574-005-0038-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025