Filtros : "TEORIA ERGÓDICA" "Holanda" Removido: "PROCESSOS ESTOCÁSTICOS" Limpar

Filtros



Refine with date range


  • Source: Differential Geometry and its Applications. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, PSEUDOGRUPOS, GRUPOIDES, ANÁLISE GLOBAL, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRERA, Alejandro e ORTIZ, Cristian. Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, v. 83, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101898. Acesso em: 28 nov. 2025.
    • APA

      Cabrera, A., & Ortiz, C. (2022). Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, 83. doi:10.1016/j.difgeo.2022.101898
    • NLM

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
    • Vancouver

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Carlos M. et al. Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, v. 515, n. , p. 1-5, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.11.012. Acesso em: 28 nov. 2025.
    • APA

      Fonseca, C. M., Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2017). Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, 515( ), 1-5. doi:10.1016/j.laa.2016.11.012
    • NLM

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
    • Vancouver

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
  • Source: Topology and its Applications. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, DINÂMICA SIMBÓLICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOYLAND, Philip e CARVALHO, André Salles de e HALL, Toby. Itineraries for inverse limits of tent maps: a backward view. Topology and its Applications, v. 232, p. 1-12, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.09.012. Acesso em: 28 nov. 2025.
    • APA

      Boyland, P., Carvalho, A. S. de, & Hall, T. (2017). Itineraries for inverse limits of tent maps: a backward view. Topology and its Applications, 232, 1-12. doi:10.1016/j.topol.2017.09.012
    • NLM

      Boyland P, Carvalho AS de, Hall T. Itineraries for inverse limits of tent maps: a backward view [Internet]. Topology and its Applications. 2017 ; 232 1-12.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.topol.2017.09.012
    • Vancouver

      Boyland P, Carvalho AS de, Hall T. Itineraries for inverse limits of tent maps: a backward view [Internet]. Topology and its Applications. 2017 ; 232 1-12.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.topol.2017.09.012
  • Source: Theoretical Computer Science. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DINÂMICA UNIDIMENSIONAL, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BASTOS, J et al. A class of cubic Rauzy fractals. Theoretical Computer Science, v. 588, p. 114-130, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.tcs.2015.04.007. Acesso em: 28 nov. 2025.
    • APA

      Bastos, J., Messaoudi, A., Rodrigues, T., & Smania, D. (2015). A class of cubic Rauzy fractals. Theoretical Computer Science, 588, 114-130. doi:10.1016/j.tcs.2015.04.007
    • NLM

      Bastos J, Messaoudi A, Rodrigues T, Smania D. A class of cubic Rauzy fractals [Internet]. Theoretical Computer Science. 2015 ; 588 114-130.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.tcs.2015.04.007
    • Vancouver

      Bastos J, Messaoudi A, Rodrigues T, Smania D. A class of cubic Rauzy fractals [Internet]. Theoretical Computer Science. 2015 ; 588 114-130.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.tcs.2015.04.007
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOT, Thierry e MAQUERA APAZA, Carlos Alberto. Algebraic Anosov actions of nilpotent Lie groups. Topology and its Applications, v. 160, n. ja 2013, p. 199-219, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2012.10.012. Acesso em: 28 nov. 2025.
    • APA

      Barbot, T., & Maquera Apaza, C. A. (2013). Algebraic Anosov actions of nilpotent Lie groups. Topology and its Applications, 160( ja 2013), 199-219. doi:10.1016/j.topol.2012.10.012
    • NLM

      Barbot T, Maquera Apaza CA. Algebraic Anosov actions of nilpotent Lie groups [Internet]. Topology and its Applications. 2013 ; 160( ja 2013): 199-219.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.topol.2012.10.012
    • Vancouver

      Barbot T, Maquera Apaza CA. Algebraic Anosov actions of nilpotent Lie groups [Internet]. Topology and its Applications. 2013 ; 160( ja 2013): 199-219.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.topol.2012.10.012
  • Source: Geometriae Dedicata. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEL'SHTYN, Alexander e GONÇALVES, Daciberg Lima. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani). Geometriae Dedicata, v. 146, n. 1, p. 211-223, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10711-009-9434-6. Acesso em: 28 nov. 2025.
    • APA

      Fel'shtyn, A., & Gonçalves, D. L. (2010). Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani). Geometriae Dedicata, 146( 1), 211-223. doi:10.1007/s10711-009-9434-6
    • NLM

      Fel'shtyn A, Gonçalves DL. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani) [Internet]. Geometriae Dedicata. 2010 ; 146( 1): 211-223.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10711-009-9434-6
    • Vancouver

      Fel'shtyn A, Gonçalves DL. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani) [Internet]. Geometriae Dedicata. 2010 ; 146( 1): 211-223.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s10711-009-9434-6
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALARCÓN, Begoña e GUÍÑEZ, Victo e VIDALON, Carlos Teobaldo Gutierrez. Planar embeddings with a globally attracting fixed point. Nonlinear Analysis, v. 69, n. 1, p. 140-150, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.na.2007.05.005. Acesso em: 28 nov. 2025.
    • APA

      Alarcón, B., Guíñez, V., & Vidalon, C. T. G. (2008). Planar embeddings with a globally attracting fixed point. Nonlinear Analysis, 69( 1), 140-150. doi:10.1016/j.na.2007.05.005
    • NLM

      Alarcón B, Guíñez V, Vidalon CTG. Planar embeddings with a globally attracting fixed point [Internet]. Nonlinear Analysis. 2008 ; 69( 1): 140-150.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.na.2007.05.005
    • Vancouver

      Alarcón B, Guíñez V, Vidalon CTG. Planar embeddings with a globally attracting fixed point [Internet]. Nonlinear Analysis. 2008 ; 69( 1): 140-150.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.na.2007.05.005
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEORIA ERGÓDICA, ENTROPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SUN, Wenxiang e VARGAS, Edson. Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions. Topology and its Applications, v. 154, n. 3, p. 683-697, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2006.09.006. Acesso em: 28 nov. 2025.
    • APA

      Sun, W., & Vargas, E. (2007). Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions. Topology and its Applications, 154( 3), 683-697. doi:10.1016/j.topol.2006.09.006
    • NLM

      Sun W, Vargas E. Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions [Internet]. Topology and its Applications. 2007 ; 154( 3): 683-697.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.topol.2006.09.006
    • Vancouver

      Sun W, Vargas E. Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions [Internet]. Topology and its Applications. 2007 ; 154( 3): 683-697.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.topol.2006.09.006
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, FOLHEAÇÕES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Alexandre Cesar Gurgel e VIDALON, Carlos Teobaldo Gutierrez e MONTOYA, Roland Rabanal. Global asymptotic stability for differentiable vector fields of R2. Journal of Differential Equations, v. 206, n. 2, p. 470-482, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2004.04.015. Acesso em: 28 nov. 2025.
    • APA

      Fernandes, A. C. G., Vidalon, C. T. G., & Montoya, R. R. (2004). Global asymptotic stability for differentiable vector fields of R2. Journal of Differential Equations, 206( 2), 470-482. doi:10.1016/j.jde.2004.04.015
    • NLM

      Fernandes ACG, Vidalon CTG, Montoya RR. Global asymptotic stability for differentiable vector fields of R2 [Internet]. Journal of Differential Equations. 2004 ; 206( 2): 470-482.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2004.04.015
    • Vancouver

      Fernandes ACG, Vidalon CTG, Montoya RR. Global asymptotic stability for differentiable vector fields of R2 [Internet]. Journal of Differential Equations. 2004 ; 206( 2): 470-482.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2004.04.015

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025