Filtros : "Electronic Notes in Discrete Mathematics" "Elsevier" Removido: "WAKABAYASHI, YOSHIKO" Limpar

Filtros



Refine with date range


  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Discrete Mathematics Days 2018. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie e KOHAYAKAWA, Yoshiharu e PERSON, Yury. Near-perfect clique-factors in sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2018.06.038. Acesso em: 19 nov. 2025. , 2018
    • APA

      Han, J., Kohayakawa, Y., & Person, Y. (2018). Near-perfect clique-factors in sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2018.06.038
    • NLM

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2018 ; 68 221-226.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2018.06.038
    • Vancouver

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2018 ; 68 221-226.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2018.06.038
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EUROCOMB'17. Unidade: IME

    Subjects: GRAFOS ALEATÓRIOS, TEORIA DE RAMSEY

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e MOTA, Guilherme Oliveira e SCHACHT, M. Monochromatic trees in random graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2017.07.033. Acesso em: 19 nov. 2025. , 2017
    • APA

      Kohayakawa, Y., Mota, G. O., & Schacht, M. (2017). Monochromatic trees in random graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2017.07.033
    • NLM

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 759-764.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2017.07.033
    • Vancouver

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 759-764.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2017.07.033
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EUROCOMB'17. Unidade: IME

    Subjects: MATEMÁTICA DISCRETA, GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLARES, M. et al. On the number of r-transitive orientations of G (n, p). Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2017.06.046. Acesso em: 19 nov. 2025. , 2017
    • APA

      Collares, M., Kohayakawa, Y., Morris, R., & Mota, G. O. (2017). On the number of r-transitive orientations of G (n, p). Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2017.06.046
    • NLM

      Collares M, Kohayakawa Y, Morris R, Mota GO. On the number of r-transitive orientations of G (n, p) [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 255-261.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2017.06.046
    • Vancouver

      Collares M, Kohayakawa Y, Morris R, Mota GO. On the number of r-transitive orientations of G (n, p) [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 255-261.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2017.06.046
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EUROCOMB'17. Unidade: IME

    Assunto: MATEMÁTICA DISCRETA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, Carlos et al. Estimating the distance to a hereditary graph property. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2017.07.014. Acesso em: 19 nov. 2025. , 2017
    • APA

      Hoppen, C., Kohayakawa, Y., Lang, R., Lefmann, H., & Stagni, H. (2017). Estimating the distance to a hereditary graph property. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2017.07.014
    • NLM

      Hoppen C, Kohayakawa Y, Lang R, Lefmann H, Stagni H. Estimating the distance to a hereditary graph property [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 607-613.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2017.07.014
    • Vancouver

      Hoppen C, Kohayakawa Y, Lang R, Lefmann H, Stagni H. Estimating the distance to a hereditary graph property [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 607-613.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2017.07.014
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: International Conference Combinatorics. Unidade: ICMC

    Subjects: ÁLGEBRA, CURVAS ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e MOTTA, B e TORRES, F. Complete arcs arising from a generalization of the Hermitian curve (extended abstract). Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2013.05.048. Acesso em: 19 nov. 2025. , 2013
    • APA

      Borges, H., Motta, B., & Torres, F. (2013). Complete arcs arising from a generalization of the Hermitian curve (extended abstract). Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2013.05.048
    • NLM

      Borges H, Motta B, Torres F. Complete arcs arising from a generalization of the Hermitian curve (extended abstract) [Internet]. Electronic Notes in Discrete Mathematics. 2013 ; 40 271-275.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2013.05.048
    • Vancouver

      Borges H, Motta B, Torres F. Complete arcs arising from a generalization of the Hermitian curve (extended abstract) [Internet]. Electronic Notes in Discrete Mathematics. 2013 ; 40 271-275.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2013.05.048
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Brazilian Symposium on Graphs, Algorithms and Combinatorics - GRACO. Unidade: IME

    Assunto: COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e SIMONOVITS, Maklós e SKOKAN, Jozef. The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2005.05.053. Acesso em: 19 nov. 2025. , 2005
    • APA

      Kohayakawa, Y., Simonovits, M., & Skokan, J. (2005). The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2005.05.053
    • NLM

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053
    • Vancouver

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Brazilian Symposium on Graphs, Algorithms and Combinatorics - GRACO. Unidade: IME

    Assunto: ANÁLISE DE ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Carlos Eduardo Rodrigues e CÁCERES, Edson Norberto e SONG, Siang Wun. An all-substrings common subsequence algorithm. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2005.05.019. Acesso em: 19 nov. 2025. , 2005
    • APA

      Alves, C. E. R., Cáceres, E. N., & Song, S. W. (2005). An all-substrings common subsequence algorithm. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2005.05.019
    • NLM

      Alves CER, Cáceres EN, Song SW. An all-substrings common subsequence algorithm [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 133-139.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2005.05.019
    • Vancouver

      Alves CER, Cáceres EN, Song SW. An all-substrings common subsequence algorithm [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 133-139.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.endm.2005.05.019
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Brazilian Symposium on Graphs, Algorithms and Combinatorics. Unidade: IME

    Assunto: SCHEDULING

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLDMAN, Alfredo e RAPINE, Christophe. Scheduling with duplication on m processors with small communication delays. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/S1571-0653(04)00255-0. Acesso em: 19 nov. 2025. , 2001
    • APA

      Goldman, A., & Rapine, C. (2001). Scheduling with duplication on m processors with small communication delays. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/S1571-0653(04)00255-0
    • NLM

      Goldman A, Rapine C. Scheduling with duplication on m processors with small communication delays [Internet]. Electronic Notes in Discrete Mathematics. 2001 ; 7 182-185.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/S1571-0653(04)00255-0
    • Vancouver

      Goldman A, Rapine C. Scheduling with duplication on m processors with small communication delays [Internet]. Electronic Notes in Discrete Mathematics. 2001 ; 7 182-185.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/S1571-0653(04)00255-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025