Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "Financiamento FAPEMIG" Removido: "Journal of Applied Analysis and Computation" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, OPERADORES DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Luiz Fernando de Oliveira e CORRÊA JUNIOR, Pablo dos Santos. Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative. Electronic Journal of Qualitative Theory of Differential Equations, v. 2024, n. 72, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2024.1.72. Acesso em: 05 dez. 2025.
    • APA

      Faria, L. F. de O., & Corrêa Junior, P. dos S. (2024). Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative. Electronic Journal of Qualitative Theory of Differential Equations, 2024( 72), 1-27. doi:10.14232/ejqtde.2024.1.72
    • NLM

      Faria LF de O, Corrêa Junior P dos S. Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 72): 1-27.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.72
    • Vancouver

      Faria LF de O, Corrêa Junior P dos S. Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 72): 1-27.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.72
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e SANTOS, Lucas Ruiz dos. Spin–orbit synchronization and singular perturbation theory. São Paulo Journal of Mathematical Sciences, v. 18, p. 1553-1589, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40863-024-00418-7. Acesso em: 05 dez. 2025.
    • APA

      Ragazzo, C. G., & Santos, L. R. dos. (2024). Spin–orbit synchronization and singular perturbation theory. São Paulo Journal of Mathematical Sciences, 18, 1553-1589. doi:10.1007/s40863-024-00418-7
    • NLM

      Ragazzo CG, Santos LR dos. Spin–orbit synchronization and singular perturbation theory [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18 1553-1589.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s40863-024-00418-7
    • Vancouver

      Ragazzo CG, Santos LR dos. Spin–orbit synchronization and singular perturbation theory [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18 1553-1589.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s40863-024-00418-7
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 05 dez. 2025.
    • APA

      Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464
    • NLM

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
    • Vancouver

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 05 dez. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1088/1361-6544/ac6370

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025