Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "Inglaterra" Removido: "Journal of Applied Analysis and Computation" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the Royal Society of Edinburgh, Section A : Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CHOLEWA, Jan W e DLOTKO, Tomasz. Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation. Proceedings of the Royal Society of Edinburgh, Section A : Mathematics, v. fe 2014, n. 1, p. 13-51, 2014Tradução . . Disponível em: https://doi.org/10.1017/S0308210511001235. Acesso em: 05 dez. 2025.
    • APA

      Carvalho, A. N. de, Cholewa, J. W., & Dlotko, T. (2014). Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation. Proceedings of the Royal Society of Edinburgh, Section A : Mathematics, fe 2014( 1), 13-51. doi:10.1017/S0308210511001235
    • NLM

      Carvalho AN de, Cholewa JW, Dlotko T. Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation [Internet]. Proceedings of the Royal Society of Edinburgh, Section A : Mathematics. 2014 ; fe 2014( 1): 13-51.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1017/S0308210511001235
    • Vancouver

      Carvalho AN de, Cholewa JW, Dlotko T. Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation [Internet]. Proceedings of the Royal Society of Edinburgh, Section A : Mathematics. 2014 ; fe 2014( 1): 13-51.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1017/S0308210511001235
  • Source: Nonlinear Analysis - Real World Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AKI, Sueli Mieko Tanaka e GODOY, Sandra Maria Semensato de. Permanence of stability for a class of system of differential equations with two delays. Nonlinear Analysis - Real World Applications, v. 10, n. 1, p. 172-184, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2007.08.021. Acesso em: 05 dez. 2025.
    • APA

      Aki, S. M. T., & Godoy, S. M. S. de. (2009). Permanence of stability for a class of system of differential equations with two delays. Nonlinear Analysis - Real World Applications, 10( 1), 172-184. doi:10.1016/j.nonrwa.2007.08.021
    • NLM

      Aki SMT, Godoy SMS de. Permanence of stability for a class of system of differential equations with two delays [Internet]. Nonlinear Analysis - Real World Applications. 2009 ;10( 1): 172-184.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.nonrwa.2007.08.021
    • Vancouver

      Aki SMT, Godoy SMS de. Permanence of stability for a class of system of differential equations with two delays [Internet]. Nonlinear Analysis - Real World Applications. 2009 ;10( 1): 172-184.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.nonrwa.2007.08.021
  • Source: Nonlinear Analysis - Real World Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge e MELLO, Luiz Fernando e BRAGA, Denis de Carvalho. Stability and Hopf bifurcation in an hexagonal governor system. Nonlinear Analysis - Real World Applications, v. 9, n. 3, p. 889-898, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2007.01.007. Acesso em: 05 dez. 2025.
    • APA

      Sotomayor, J., Mello, L. F., & Braga, D. de C. (2008). Stability and Hopf bifurcation in an hexagonal governor system. Nonlinear Analysis - Real World Applications, 9( 3), 889-898. doi:10.1016/j.nonrwa.2007.01.007
    • NLM

      Sotomayor J, Mello LF, Braga D de C. Stability and Hopf bifurcation in an hexagonal governor system [Internet]. Nonlinear Analysis - Real World Applications. 2008 ; 9( 3): 889-898.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.nonrwa.2007.01.007
    • Vancouver

      Sotomayor J, Mello LF, Braga D de C. Stability and Hopf bifurcation in an hexagonal governor system [Internet]. Nonlinear Analysis - Real World Applications. 2008 ; 9( 3): 889-898.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.nonrwa.2007.01.007
  • Source: Mathematical and Computer Modelling. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge et al. Bifurcation analysis of a model for biological control. Mathematical and Computer Modelling, v. 48, n. 3-4, p. 375-387, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.mcm.2007.09.013. Acesso em: 05 dez. 2025.
    • APA

      Sotomayor, J., Mello, L. F., Santos, D. B., & Braga, D. de C. (2008). Bifurcation analysis of a model for biological control. Mathematical and Computer Modelling, 48( 3-4), 375-387. doi:10.1016/j.mcm.2007.09.013
    • NLM

      Sotomayor J, Mello LF, Santos DB, Braga D de C. Bifurcation analysis of a model for biological control [Internet]. Mathematical and Computer Modelling. 2008 ; 48( 3-4): 375-387.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.mcm.2007.09.013
    • Vancouver

      Sotomayor J, Mello LF, Santos DB, Braga D de C. Bifurcation analysis of a model for biological control [Internet]. Mathematical and Computer Modelling. 2008 ; 48( 3-4): 375-387.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.mcm.2007.09.013
  • Source: Computers & Mathematics with Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMÉNEZ ALARCON, Raul Dario et al. The reconstruction of a specially structured Jacobi matrix with an application to damage detection in rods. Computers & Mathematics with Applications, v. 49, n. 11-12, p. 1815-1823, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.camwa.2004.10.043. Acesso em: 05 dez. 2025.
    • APA

      Jiménez Alarcon, R. D., Santos, L. C. de C., Kuhl, N. M., & Egana, J. C. (2005). The reconstruction of a specially structured Jacobi matrix with an application to damage detection in rods. Computers & Mathematics with Applications, 49( 11-12), 1815-1823. doi:10.1016/j.camwa.2004.10.043
    • NLM

      Jiménez Alarcon RD, Santos LC de C, Kuhl NM, Egana JC. The reconstruction of a specially structured Jacobi matrix with an application to damage detection in rods [Internet]. Computers & Mathematics with Applications. 2005 ; 49( 11-12): 1815-1823.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.camwa.2004.10.043
    • Vancouver

      Jiménez Alarcon RD, Santos LC de C, Kuhl NM, Egana JC. The reconstruction of a specially structured Jacobi matrix with an application to damage detection in rods [Internet]. Computers & Mathematics with Applications. 2005 ; 49( 11-12): 1815-1823.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.camwa.2004.10.043

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025