Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "OLIVEIRA, REGILENE DELAZARI DOS SANTOS" Removido: "Discrete and Continuous Dynamical Systems. Series A" Limpar

Filtros



Limitar por data


  • Fonte: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2025, n. 60, p. 1-105, 2025Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2025.1.60. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2025). Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas. Electronic Journal of Qualitative Theory of Differential Equations, 2025( 60), 1-105. doi:10.14232/ejqtde.2025.1.60
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2025 ; 2025( 60): 1-105.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2025.1.60
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2025 ; 2025( 60): 1-105.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2025.1.60
  • Fonte: Geometriae Dedicata. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho e OLIVEIRA, Regilene Delazari dos Santos e TRAVAGLINI, Ana Maria. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D). Geometriae Dedicata, v. 217, n. 6, p. 1-42, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10711-023-00827-6. Acesso em: 05 dez. 2025.
    • APA

      Mota, M. C., Oliveira, R. D. dos S., & Travaglini, A. M. (2023). The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D). Geometriae Dedicata, 217( 6), 1-42. doi:10.1007/s10711-023-00827-6
    • NLM

      Mota MC, Oliveira RD dos S, Travaglini AM. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D) [Internet]. Geometriae Dedicata. 2023 ; 217( 6): 1-42.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10711-023-00827-6
    • Vancouver

      Mota MC, Oliveira RD dos S, Travaglini AM. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D) [Internet]. Geometriae Dedicata. 2023 ; 217( 6): 1-42.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10711-023-00827-6
  • Fonte: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Fonte: Electronic Journal of Differential Equations. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, v. 2020, n. 55, p. 1-19, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, 2020( 55), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2025 dez. 05 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
  • Fonte: São Paulo Journal of Mathematical Sciences. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS LINEARES, ESPAÇOS SIMÉTRICOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Limit cycles for two classes of control piecewise linear differential systems. São Paulo Journal of Mathematical Sciences, v. 14, n. 1, p. 49-65, 2020Tradução . . Disponível em: https://doi.org/10.1007/s40863-020-00163-7. Acesso em: 05 dez. 2025.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2020). Limit cycles for two classes of control piecewise linear differential systems. São Paulo Journal of Mathematical Sciences, 14( 1), 49-65. doi:10.1007/s40863-020-00163-7
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 1): 49-65.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s40863-020-00163-7
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 1): 49-65.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s40863-020-00163-7
  • Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6875. Acesso em: 05 dez. 2025. , 2019
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2019). Global dynamics of the May-Leonard system with a Darboux invariant. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6875
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. 2019 ;[citado 2025 dez. 05 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6875
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. 2019 ;[citado 2025 dez. 05 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6875
  • Fonte: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCINGER, Matej et al. Linearizability problem of persistent centers. Electronic Journal of Qualitative Theory of Differential Equations, n. 37, p. 1-27, 2018Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2018.1.37. Acesso em: 05 dez. 2025.
    • APA

      Mencinger, M., Fercec, B., Fernandes, W., & Oliveira, R. D. dos S. (2018). Linearizability problem of persistent centers. Electronic Journal of Qualitative Theory of Differential Equations, ( 37), 1-27. doi:10.14232/ejqtde.2018.1.37
    • NLM

      Mencinger M, Fercec B, Fernandes W, Oliveira RD dos S. Linearizability problem of persistent centers [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2018 ;( 37): 1-27.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2018.1.37
    • Vancouver

      Mencinger M, Fercec B, Fernandes W, Oliveira RD dos S. Linearizability problem of persistent centers [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2018 ;( 37): 1-27.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2018.1.37
  • Fonte: Caderno de resumos. Nome do evento: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DINÂMICA DE POPULAÇÕES

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos. Competição entre duas espécies por meio da teoria qualitativa das EDOs. 2018, Anais.. São Carlos: ICMC-USP, 2018. Disponível em: http://sim.icmc.usp.br/sim2018/caderno-resumos.html. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, R. D. dos S. (2018). Competição entre duas espécies por meio da teoria qualitativa das EDOs. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • NLM

      Oliveira RD dos S. Competição entre duas espécies por meio da teoria qualitativa das EDOs [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • Vancouver

      Oliveira RD dos S. Competição entre duas espécies por meio da teoria qualitativa das EDOs [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
  • Fonte: Caderno de resumos. Nome do evento: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, SISTEMAS NÃO LINEARES

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAULINO, Kadu Vinicius Toledo. A hipótese de hiperbolicidade do teorema de Hartman-Grobman. 2018, Anais.. São Carlos: ICMC-USP, 2018. Disponível em: http://sim.icmc.usp.br/sim2018/caderno-resumos.html. Acesso em: 05 dez. 2025.
    • APA

      Paulino, K. V. T. (2018). A hipótese de hiperbolicidade do teorema de Hartman-Grobman. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • NLM

      Paulino KVT. A hipótese de hiperbolicidade do teorema de Hartman-Grobman [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • Vancouver

      Paulino KVT. A hipótese de hiperbolicidade do teorema de Hartman-Grobman [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
  • Fonte: Computational and Applied Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS LINEARES, TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Ap. B. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system. Computational and Applied Mathematics, v. 37, n. 2, p. 1550-1561, 2018Tradução . . Disponível em: https://doi.org/10.1007/s40314-016-0413-x. Acesso em: 05 dez. 2025.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2018). On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system. Computational and Applied Mathematics, 37( 2), 1550-1561. doi:10.1007/s40314-016-0413-x
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system [Internet]. Computational and Applied Mathematics. 2018 ; 37( 2): 1550-1561.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s40314-016-0413-x
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system [Internet]. Computational and Applied Mathematics. 2018 ; 37( 2): 1550-1561.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s40314-016-0413-x
  • Fonte: Caderno de resumos. Nome do evento: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra D. Uma aplicação (legal) de análise qualitativa das EDO's. 2018, Anais.. São Carlos: ICMC-USP, 2018. Disponível em: http://sim.icmc.usp.br/sim2018/caderno-resumos.html. Acesso em: 05 dez. 2025.
    • APA

      Baldissera, M. D. (2018). Uma aplicação (legal) de análise qualitativa das EDO's. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • NLM

      Baldissera MD. Uma aplicação (legal) de análise qualitativa das EDO's [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • Vancouver

      Baldissera MD. Uma aplicação (legal) de análise qualitativa das EDO's [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
  • Fonte: Nonlinear Dynamics. Unidade: ICMC

    Assuntos: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEREU, Ana C e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila A. B. Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems. Nonlinear Dynamics, v. 93, n. 4, p. Se 2018, 2018Tradução . . Disponível em: https://doi.org/10.1007/s11071-018-4319-6. Acesso em: 05 dez. 2025.
    • APA

      Mereu, A. C., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2018). Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems. Nonlinear Dynamics, 93( 4), Se 2018. doi:10.1007/s11071-018-4319-6
    • NLM

      Mereu AC, Oliveira RD dos S, Rodrigues CAB. Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems [Internet]. Nonlinear Dynamics. 2018 ; 93( 4): Se 2018.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11071-018-4319-6
    • Vancouver

      Mereu AC, Oliveira RD dos S, Rodrigues CAB. Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems [Internet]. Nonlinear Dynamics. 2018 ; 93( 4): Se 2018.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11071-018-4319-6
  • Fonte: Caderno de resumos. Nome do evento: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORO, Pedro Guapo. Introdução à técnica de blowup. 2018, Anais.. São Carlos: ICMC-USP, 2018. Disponível em: http://sim.icmc.usp.br/sim2018/caderno-resumos.html. Acesso em: 05 dez. 2025.
    • APA

      Moro, P. G. (2018). Introdução à técnica de blowup. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • NLM

      Moro PG. Introdução à técnica de blowup [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
    • Vancouver

      Moro PG. Introdução à técnica de blowup [Internet]. Caderno de resumos. 2018 ;[citado 2025 dez. 05 ] Available from: http://sim.icmc.usp.br/sim2018/caderno-resumos.html
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, v. 29, n. Ju 2017, p. 597-613, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9486-2. Acesso em: 05 dez. 2025.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
  • Fonte: Applied Mathematics and Computation. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCINGER, Matej et al. Cyclicity of some analytic maps. Applied Mathematics and Computation, v. 295, p. 114-125, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.amc.2016.09.026. Acesso em: 05 dez. 2025.
    • APA

      Mencinger, M., Fercec, B., Oliveira, R. D. dos S., & Pagon, D. (2017). Cyclicity of some analytic maps. Applied Mathematics and Computation, 295, 114-125. doi:10.1016/j.amc.2016.09.026
    • NLM

      Mencinger M, Fercec B, Oliveira RD dos S, Pagon D. Cyclicity of some analytic maps [Internet]. Applied Mathematics and Computation. 2017 ; 295 114-125.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.amc.2016.09.026
    • Vancouver

      Mencinger M, Fercec B, Oliveira RD dos S, Pagon D. Cyclicity of some analytic maps [Internet]. Applied Mathematics and Computation. 2017 ; 295 114-125.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.amc.2016.09.026
  • Fonte: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson et al. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, v. No 2017, n. 9, p. 3259-3272, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2017136. Acesso em: 05 dez. 2025.
    • APA

      Itikawa, J., Llibre, J., Mereu, A. C., & Oliveira, R. D. dos S. (2017). Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, No 2017( 9), 3259-3272. doi:10.3934/dcdsb.2017136
    • NLM

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3934/dcdsb.2017136
    • Vancouver

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3934/dcdsb.2017136
  • Fonte: Physics Letters A. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Polynomial integrability of Hamiltonian systems with homogeneous potentials of degree −k. Physics Letters A, v. 380, n. 46, p. 3876-3880, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.physleta.2016.09.033. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2016). Polynomial integrability of Hamiltonian systems with homogeneous potentials of degree −k. Physics Letters A, 380( 46), 3876-3880. doi:10.1016/j.physleta.2016.09.033
    • NLM

      Oliveira RD dos S, Valls C. Polynomial integrability of Hamiltonian systems with homogeneous potentials of degree −k [Internet]. Physics Letters A. 2016 ; 380( 46): 3876-3880.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.physleta.2016.09.033
    • Vancouver

      Oliveira RD dos S, Valls C. Polynomial integrability of Hamiltonian systems with homogeneous potentials of degree −k [Internet]. Physics Letters A. 2016 ; 380( 46): 3876-3880.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.physleta.2016.09.033
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS, INVARIANTES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, v. 26, n. 11, p. 1650188-1-1650188-26, 2016Tradução . . Disponível em: https://doi.org/10.1142/S0218127416501881. Acesso em: 05 dez. 2025.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2016). Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, 26( 11), 1650188-1-1650188-26. doi:10.1142/S0218127416501881
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1142/S0218127416501881
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1142/S0218127416501881
  • Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf. Acesso em: 05 dez. 2025. , 2016
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2016). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
  • Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the Darboux integrability of a three-dimensional forced-damped differential system. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf. Acesso em: 05 dez. 2025. , 2016
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2016). On the Darboux integrability of a three-dimensional forced-damped differential system. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025