Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "Schlomiuk, Dana" Removido: "Journal of Applied Analysis and Computation" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2025, n. 60, p. 1-105, 2025Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2025.1.60. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2025). Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas. Electronic Journal of Qualitative Theory of Differential Equations, 2025( 60), 1-105. doi:10.14232/ejqtde.2025.1.60
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2025 ; 2025( 60): 1-105.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2025.1.60
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2025 ; 2025( 60): 1-105.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2025.1.60
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 05 dez. 2025.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2025 dez. 05 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf. Acesso em: 05 dez. 2025. , 2016
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2016). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
  • Unidade: ICMC

    Subjects: SINGULARIDADES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf. Acesso em: 05 dez. 2025. , 2016
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2016). Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines [Internet]. 2016 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/8bd01b9c-f2f6-4eff-a032-3d172002a5f7/BIBLIOTECA_158_Nota%20Serie%20Mat%20413.pdf. Acesso em: 05 dez. 2025. , 2015
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2015). Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/8bd01b9c-f2f6-4eff-a032-3d172002a5f7/BIBLIOTECA_158_Nota%20Serie%20Mat%20413.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines [Internet]. 2015 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/8bd01b9c-f2f6-4eff-a032-3d172002a5f7/BIBLIOTECA_158_Nota%20Serie%20Mat%20413.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines [Internet]. 2015 ;[citado 2025 dez. 05 ] Available from: https://repositorio.usp.br/directbitstream/8bd01b9c-f2f6-4eff-a032-3d172002a5f7/BIBLIOTECA_158_Nota%20Serie%20Mat%20413.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025