Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "TOPOLOGIA ALGÉBRICA" Removido: "Financiado pela FAPESP" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 05 dez. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TOPOLOGIA ALGÉBRICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e PERA, Maria Patrizia. Continuation results for retarded functional differential equations on manifolds. 2015, Anais.. São Carlos: ICMC-USP, 2015. Disponível em: http://summer.icmc.usp.br/summers/summer15/download/Summer15.pdf. Acesso em: 05 dez. 2025.
    • APA

      Benevieri, P., Calamai, A., & Pera, M. P. (2015). Continuation results for retarded functional differential equations on manifolds. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer15/download/Summer15.pdf
    • NLM

      Benevieri P, Calamai A, Pera MP. Continuation results for retarded functional differential equations on manifolds [Internet]. Abstracts. 2015 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer15/download/Summer15.pdf
    • Vancouver

      Benevieri P, Calamai A, Pera MP. Continuation results for retarded functional differential equations on manifolds [Internet]. Abstracts. 2015 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer15/download/Summer15.pdf
  • Source: Discrete and Continuous Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEMUNER, D. P e FEDERSON, Marcia e VIDALON, Carlos Teobaldo Gutiérrez. The Poincaré-Bendixson theorem on the Klein bottle for continuous vector fields. Discrete and Continuous Dynamical Systems, v. 25, n. 2, p. 495-509, 2009Tradução . . Disponível em: https://doi.org/10.3934/dcds.2009.25.495. Acesso em: 05 dez. 2025.
    • APA

      Demuner, D. P., Federson, M., & Vidalon, C. T. G. (2009). The Poincaré-Bendixson theorem on the Klein bottle for continuous vector fields. Discrete and Continuous Dynamical Systems, 25( 2), 495-509. doi:10.3934/dcds.2009.25.495
    • NLM

      Demuner DP, Federson M, Vidalon CTG. The Poincaré-Bendixson theorem on the Klein bottle for continuous vector fields [Internet]. Discrete and Continuous Dynamical Systems. 2009 ; 25( 2): 495-509.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3934/dcds.2009.25.495
    • Vancouver

      Demuner DP, Federson M, Vidalon CTG. The Poincaré-Bendixson theorem on the Klein bottle for continuous vector fields [Internet]. Discrete and Continuous Dynamical Systems. 2009 ; 25( 2): 495-509.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3934/dcds.2009.25.495

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025