Filtros : "Computational Optimization and Applications" "Financiamento FAPESP" Removido: "BIRGIN, ERNESTO JULIAN GOLDBERG" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: ANÁLISE CONVEXA, ÁLGEBRAS DE JORDAN

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Strong global convergence properties of algorithms for nonlinear symmetric cone programming. Computational Optimization and Applications, v. 91, p. 397-421, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10589-024-00642-z. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Ramos, A., Santos, D. O., Secchin, L. D., & Serranoni, A. (2025). Strong global convergence properties of algorithms for nonlinear symmetric cone programming. Computational Optimization and Applications, 91, 397-421. doi:10.1007/s10589-024-00642-z
    • NLM

      Andreani R, Haeser G, Ramos A, Santos DO, Secchin LD, Serranoni A. Strong global convergence properties of algorithms for nonlinear symmetric cone programming [Internet]. Computational Optimization and Applications. 2025 ;91 397-421.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-024-00642-z
    • Vancouver

      Andreani R, Haeser G, Ramos A, Santos DO, Secchin LD, Serranoni A. Strong global convergence properties of algorithms for nonlinear symmetric cone programming [Internet]. Computational Optimization and Applications. 2025 ;91 397-421.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-024-00642-z
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: DUALIDADE EM VARIEDADES, FUNÇÕES GENERALIZADAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRÉ, Thiago Afonso de e SILVA, Paulo J. S. Exact penalties for variational inequalities with applications to nonlinear complementarity problems. Computational Optimization and Applications, v. 47, n. 3, p. 401-429, 2009Tradução . . Disponível em: https://doi.org/10.1007/s10589-008-9232-3. Acesso em: 19 nov. 2025.
    • APA

      André, T. A. de, & Silva, P. J. S. (2009). Exact penalties for variational inequalities with applications to nonlinear complementarity problems. Computational Optimization and Applications, 47( 3), 401-429. doi:10.1007/s10589-008-9232-3
    • NLM

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementarity problems [Internet]. Computational Optimization and Applications. 2009 ; 47( 3): 401-429.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-008-9232-3
    • Vancouver

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementarity problems [Internet]. Computational Optimization and Applications. 2009 ; 47( 3): 401-429.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-008-9232-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025