Filtros : "Financiamento EU" "Financiamento Horizon 2020" Removido: "Financiamento MICIU" Limpar

Filtros



Refine with date range


  • Source: Physical Review A. Unidade: IFSC

    Subjects: ESPECTROSCOPIA, FLUORESCÊNCIA, LASER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PULJIĆ, Ivana et al. Lifetime measurement of the 5⁢𝑠⁢5⁢𝑝⁢1⁢𝑃1 state in strontium. Physical Review A, v. 111, n. 3, p. 032809-1-032809-8, 2025Tradução . . Disponível em: https://doi.org/10.1103/PhysRevA.111.032809. Acesso em: 27 nov. 2025.
    • APA

      Puljić, I., Cipris, A., Aumiler, D., Ban, T., & Šantić, N. (2025). Lifetime measurement of the 5⁢𝑠⁢5⁢𝑝⁢1⁢𝑃1 state in strontium. Physical Review A, 111( 3), 032809-1-032809-8. doi:10.1103/PhysRevA.111.032809
    • NLM

      Puljić I, Cipris A, Aumiler D, Ban T, Šantić N. Lifetime measurement of the 5⁢𝑠⁢5⁢𝑝⁢1⁢𝑃1 state in strontium [Internet]. Physical Review A. 2025 ; 111( 3): 032809-1-032809-8.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1103/PhysRevA.111.032809
    • Vancouver

      Puljić I, Cipris A, Aumiler D, Ban T, Šantić N. Lifetime measurement of the 5⁢𝑠⁢5⁢𝑝⁢1⁢𝑃1 state in strontium [Internet]. Physical Review A. 2025 ; 111( 3): 032809-1-032809-8.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1103/PhysRevA.111.032809
  • Source: Nano Letters. Unidade: IFSC

    Subjects: ÓPTICA, LASER, OURO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHANG, Fengchan et al. Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles. Nano Letters, v. 24, n. 12, p. 3785-3792 + supporting information: s1-s11, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.nanolett.4c00379. Acesso em: 27 nov. 2025.
    • APA

      Zhang, F., Oiticica, P. R. A., Arredondo, J. A., Arai, M. S., Oliveira Junior, O. N. de, Jaque, D., et al. (2024). Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles. Nano Letters, 24( 12), 3785-3792 + supporting information: s1-s11. doi:10.1021/acs.nanolett.4c00379
    • NLM

      Zhang F, Oiticica PRA, Arredondo JA, Arai MS, Oliveira Junior ON de, Jaque D, Dominguez AIF, de Camargo ASS, González PH. Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles [Internet]. Nano Letters. 2024 ; 24( 12): 3785-3792 + supporting information: s1-s11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1021/acs.nanolett.4c00379
    • Vancouver

      Zhang F, Oiticica PRA, Arredondo JA, Arai MS, Oliveira Junior ON de, Jaque D, Dominguez AIF, de Camargo ASS, González PH. Brownian motion governs the plasmonic enhancement of colloidal ipconverting nanoparticles [Internet]. Nano Letters. 2024 ; 24( 12): 3785-3792 + supporting information: s1-s11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1021/acs.nanolett.4c00379
  • Source: Current Biology. Unidade: ESALQ

    Subjects: BIODIVERSIDADE, COMUNIDADES VEGETAIS, DESMATAMENTO, ECOLOGIA FLORESTAL, IMPACTOS AMBIENTAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Raquel L et al. Pervasive gaps in Amazonian ecological research. Current Biology, v. 33, p. 3495–3504, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.cub.2023.06.077. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, R. L., Resende, A. F. de, Barlow, J., França, F. M., Moura, M. R., Maciel, R., et al. (2023). Pervasive gaps in Amazonian ecological research. Current Biology, 33, 3495–3504. doi:10.1016/j.cub.2023.06.077
    • NLM

      Carvalho RL, Resende AF de, Barlow J, França FM, Moura MR, Maciel R, Alves-Martins F, Shutt J, Nunes CA. Pervasive gaps in Amazonian ecological research [Internet]. Current Biology. 2023 ; 33 3495–3504.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.cub.2023.06.077
    • Vancouver

      Carvalho RL, Resende AF de, Barlow J, França FM, Moura MR, Maciel R, Alves-Martins F, Shutt J, Nunes CA. Pervasive gaps in Amazonian ecological research [Internet]. Current Biology. 2023 ; 33 3495–3504.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.cub.2023.06.077
  • Source: Nature Ecology & Evolution. Unidade: ESALQ

    Subjects: ÁRVORES FLORESTAIS, BIODIVERSIDADE, BIOGEOGRAFIA, INVENTÁRIO FLORESTAL, LATITUDE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Jingjing et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nature Ecology & Evolution, p. 1-17, 2022Tradução . . Disponível em: https://doi.org/10.1038/s41559-022-01831-x. Acesso em: 27 nov. 2025.
    • APA

      Liang, J., Gamarra, J. G. P., Picard, N., & Brancalion, P. H. S. (2022). Co-limitation towards lower latitudes shapes global forest diversity gradients. Nature Ecology & Evolution, 1-17. doi:10.1038/s41559-022-01831-x
    • NLM

      Liang J, Gamarra JGP, Picard N, Brancalion PHS. Co-limitation towards lower latitudes shapes global forest diversity gradients [Internet]. Nature Ecology & Evolution. 2022 ; 1-17.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1038/s41559-022-01831-x
    • Vancouver

      Liang J, Gamarra JGP, Picard N, Brancalion PHS. Co-limitation towards lower latitudes shapes global forest diversity gradients [Internet]. Nature Ecology & Evolution. 2022 ; 1-17.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1038/s41559-022-01831-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025