Filtros : "DINÂMICA TOPOLÓGICA" "2022" Removido: "Topological Methods in Nonlinear Analysis" Limpar

Filtros



Refine with date range


  • Source: Journal of Nonlinear Science. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, SISTEMAS DISSIPATIVO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong e CUNHA, Arthur Cavalcante e LANGA, José Antonio. Finite-dimensionality of tempered random uniform attractors. Journal of Nonlinear Science, v. 32, p. 1-55, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00332-021-09764-8. Acesso em: 06 dez. 2025.
    • APA

      Cui, H., Cunha, A. C., & Langa, J. A. (2022). Finite-dimensionality of tempered random uniform attractors. Journal of Nonlinear Science, 32, 1-55. doi:10.1007/s00332-021-09764-8
    • NLM

      Cui H, Cunha AC, Langa JA. Finite-dimensionality of tempered random uniform attractors [Internet]. Journal of Nonlinear Science. 2022 ; 32 1-55.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s00332-021-09764-8
    • Vancouver

      Cui H, Cunha AC, Langa JA. Finite-dimensionality of tempered random uniform attractors [Internet]. Journal of Nonlinear Science. 2022 ; 32 1-55.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s00332-021-09764-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 06 dez. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Asymptotic Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DE CONTROLE, TEORIA DE SISTEMAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, v. 129, n. 1, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.3233/ASY-211719. Acesso em: 06 dez. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2022). Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, 129( 1), 1-27. doi:10.3233/ASY-211719
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3233/ASY-211719
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3233/ASY-211719

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025