Filtros : "DINÂMICA TOPOLÓGICA" "França" Removido: "Generalized ordinary differential equations in abstract spaces and applications" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 06 dez. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: OPERADORES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAYART, Frédéric e DARJI, Udayan B. e PIRES, Benito Frazão. Topological transitivity and mixing of composition operators. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. 125-139, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.04.063. Acesso em: 06 dez. 2025.
    • APA

      Bayart, F., Darji, U. B., & Pires, B. F. (2018). Topological transitivity and mixing of composition operators. Journal of Mathematical Analysis and Applications, 465( 1), 125-139. doi:10.1016/j.jmaa.2018.04.063
    • NLM

      Bayart F, Darji UB, Pires BF. Topological transitivity and mixing of composition operators [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 125-139.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.063
    • Vancouver

      Bayart F, Darji UB, Pires BF. Topological transitivity and mixing of composition operators [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 125-139.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.063
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty A. de et al. Lyapunov graphs for circle valued functions. Topology and its Applications, v. 245, p. 62-91, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.06.008. Acesso em: 06 dez. 2025.
    • APA

      Rezende, K. A. de, Ledesma, G. G. E., Manzoli Neto, O., & Vago, G. M. (2018). Lyapunov graphs for circle valued functions. Topology and its Applications, 245, 62-91. doi:10.1016/j.topol.2018.06.008
    • NLM

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
    • Vancouver

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2025 dez. 06 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
  • Source: Stochastics and Dynamics. Unidade: IME

    Subjects: PROCESSOS ESTACIONÁRIOS, TEOREMAS LIMITES, PROBABILIDADE, DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e SAUSSOL, Benoît. Almost sure convergence of the clustering factor in α-mixing processes. Stochastics and Dynamics, v. 16, n. article º 1660016, p. 11 , 2016Tradução . . Disponível em: https://doi.org/10.1142/S0219493716600169. Acesso em: 06 dez. 2025.
    • APA

      Abadi, M. N., & Saussol, B. (2016). Almost sure convergence of the clustering factor in α-mixing processes. Stochastics and Dynamics, 16( article º 1660016), 11 . doi:10.1142/S0219493716600169
    • NLM

      Abadi MN, Saussol B. Almost sure convergence of the clustering factor in α-mixing processes [Internet]. Stochastics and Dynamics. 2016 ; 16( article º 1660016): 11 .[citado 2025 dez. 06 ] Available from: https://doi.org/10.1142/S0219493716600169
    • Vancouver

      Abadi MN, Saussol B. Almost sure convergence of the clustering factor in α-mixing processes [Internet]. Stochastics and Dynamics. 2016 ; 16( article º 1660016): 11 .[citado 2025 dez. 06 ] Available from: https://doi.org/10.1142/S0219493716600169

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025