Filtros : "DINÂMICA TOPOLÓGICA" "TAL, FABIO ARMANDO" Removido: "Generalized ordinary differential equations in abstract spaces and applications" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: DINÂMICA TOPOLÓGICA, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Workshop on topological dynamics and rotation theory on surfaces. . Jena: Friedrich Schiller University. Disponível em: https://users.fmi.uni-jena.de/~tjaeger/workshops/surfaces2017/abstracts.pdf. Acesso em: 27 nov. 2025. , 2017
    • APA

      Workshop on topological dynamics and rotation theory on surfaces. (2017). Workshop on topological dynamics and rotation theory on surfaces. Jena: Friedrich Schiller University. Recuperado de https://users.fmi.uni-jena.de/~tjaeger/workshops/surfaces2017/abstracts.pdf
    • NLM

      Workshop on topological dynamics and rotation theory on surfaces [Internet]. 2017 ;[citado 2025 nov. 27 ] Available from: https://users.fmi.uni-jena.de/~tjaeger/workshops/surfaces2017/abstracts.pdf
    • Vancouver

      Workshop on topological dynamics and rotation theory on surfaces [Internet]. 2017 ;[citado 2025 nov. 27 ] Available from: https://users.fmi.uni-jena.de/~tjaeger/workshops/surfaces2017/abstracts.pdf
  • Source: Fundamenta Mathematicae. Unidade: IME

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Tatiane Cardoso e GONSCHOROWSKI, Juliano dos Santos e TAL, Fábio Armando. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits. Fundamenta Mathematicae, v. 231, n. 1, p. 93-99, 2015Tradução . . Disponível em: https://doi.org/10.4064/fm231-1-6. Acesso em: 27 nov. 2025.
    • APA

      Batista, T. C., Gonschorowski, J. dos S., & Tal, F. A. (2015). Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits. Fundamenta Mathematicae, 231( 1), 93-99. doi:10.4064/fm231-1-6
    • NLM

      Batista TC, Gonschorowski J dos S, Tal FA. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits [Internet]. Fundamenta Mathematicae. 2015 ; 231( 1): 93-99.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4064/fm231-1-6
    • Vancouver

      Batista TC, Gonschorowski J dos S, Tal FA. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits [Internet]. Fundamenta Mathematicae. 2015 ; 231( 1): 93-99.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4064/fm231-1-6
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: DINÂMICA TOPOLÓGICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e TAL, Fábio Armando e GARCIA, Bráulio Augusto. Dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergodic Theory and Dynamical Systems, v. 34, n. 2, p. 409-422, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2012.156. Acesso em: 27 nov. 2025.
    • APA

      Addas-Zanata, S., Tal, F. A., & Garcia, B. A. (2014). Dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergodic Theory and Dynamical Systems, 34( 2), 409-422. doi:10.1017/etds.2012.156
    • NLM

      Addas-Zanata S, Tal FA, Garcia BA. Dynamics of homeomorphisms of the torus homotopic to Dehn twists [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 2): 409-422.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2012.156
    • Vancouver

      Addas-Zanata S, Tal FA, Garcia BA. Dynamics of homeomorphisms of the torus homotopic to Dehn twists [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 2): 409-422.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2012.156

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025