Filtros : "Financiamento AEI-FEDER" "Indexado no Compendex" Removido: "Journal of Dynamics and Differential Equations" Limpar

Filtros



Refine with date range


  • Source: Chaos, Solitons and Fractals. Unidade: ICMC

    Subjects: MUTUALISMO (BIOLOGIA), COMPETIÇÃO, ESTABILIDADE ESTRUTURAL, ANÁLISE NUMÉRICA APLICADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WANG, Xiangrong et al. Interspecific competition shapes the structural stability of mutualistic networks. Chaos, Solitons and Fractals, v. 172, p. 1-9, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2023.113507. Acesso em: 27 nov. 2025.
    • APA

      Wang, X., Peron, T., Dubbeldam, J. L. A., Kéfi, S., & Moreno, Y. (2023). Interspecific competition shapes the structural stability of mutualistic networks. Chaos, Solitons and Fractals, 172, 1-9. doi:10.1016/j.chaos.2023.113507
    • NLM

      Wang X, Peron T, Dubbeldam JLA, Kéfi S, Moreno Y. Interspecific competition shapes the structural stability of mutualistic networks [Internet]. Chaos, Solitons and Fractals. 2023 ; 172 1-9.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.chaos.2023.113507
    • Vancouver

      Wang X, Peron T, Dubbeldam JLA, Kéfi S, Moreno Y. Interspecific competition shapes the structural stability of mutualistic networks [Internet]. Chaos, Solitons and Fractals. 2023 ; 172 1-9.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.chaos.2023.113507
  • Source: Evolutionary Computation. Unidade: FFCLRP

    Subjects: OPERADORES, EVOLUÇÃO, COMPUTAÇÃO EVOLUTIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHICANO, Francisco et al. Dynastic potential crossover operator. Evolutionary Computation, v. 30, n. 3, p. 409–446, 2022Tradução . . Disponível em: https://doi.org/10.1162/evco_a_00305. Acesso em: 27 nov. 2025.
    • APA

      Chicano, F., Ochoa, G., Whitley, L. D., & Tinós, R. (2022). Dynastic potential crossover operator. Evolutionary Computation, 30( 3), 409–446. doi:10.1162/evco_a_00305
    • NLM

      Chicano F, Ochoa G, Whitley LD, Tinós R. Dynastic potential crossover operator [Internet]. Evolutionary Computation. 2022 ; 30( 3): 409–446.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1162/evco_a_00305
    • Vancouver

      Chicano F, Ochoa G, Whitley LD, Tinós R. Dynastic potential crossover operator [Internet]. Evolutionary Computation. 2022 ; 30( 3): 409–446.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1162/evco_a_00305
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0218127422502455

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025