Source: Agronomy. Unidade: ESALQ
Subjects: ANÁLISE ESPECTRAL, APRENDIZADO COMPUTACIONAL, BIOMETRIA, CANA-DE-AÇÚCAR, SENSOR
ABNT
ALEXANDRE, Marta Laura de Souza et al. Sugarcane (Saccharum officinarum) productivity estimation using multispectral sensors in RPAs, biometric variables, and vegetation indices. Agronomy, v. 15, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.3390/agronomy15092149. Acesso em: 27 nov. 2025.APA
Alexandre, M. L. de S., Lima, I. de L. e, Nilsson, M. S., Rizzo, R., Silva, C. A. A. C., & Fiorio, P. R. (2025). Sugarcane (Saccharum officinarum) productivity estimation using multispectral sensors in RPAs, biometric variables, and vegetation indices. Agronomy, 15, 1-20. doi:10.3390/agronomy15092149NLM
Alexandre ML de S, Lima I de L e, Nilsson MS, Rizzo R, Silva CAAC, Fiorio PR. Sugarcane (Saccharum officinarum) productivity estimation using multispectral sensors in RPAs, biometric variables, and vegetation indices [Internet]. Agronomy. 2025 ; 15 1-20.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/agronomy15092149Vancouver
Alexandre ML de S, Lima I de L e, Nilsson MS, Rizzo R, Silva CAAC, Fiorio PR. Sugarcane (Saccharum officinarum) productivity estimation using multispectral sensors in RPAs, biometric variables, and vegetation indices [Internet]. Agronomy. 2025 ; 15 1-20.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/agronomy15092149
