Filtros : "Journal of Petroleum Science and Engineering" "GIORIA, RAFAEL DOS SANTOS" Limpar

Filtros



Refine with date range


  • Source: Journal of Petroleum Science and Engineering. Unidade: EP

    Subjects: PETROGRAFIA, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAMOTO, Hugo e GIORIA, Rafael dos Santos e CARNEIRO, Cleyton de Carvalho. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. Journal of Petroleum Science and Engineering, v. 220, p. 10 , 2024Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2022.111169. Acesso em: 08 nov. 2025.
    • APA

      Tamoto, H., Gioria, R. dos S., & Carneiro, C. de C. (2024). Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. Journal of Petroleum Science and Engineering, 220, 10 . doi:10.1016/j.petrol.2022.111169
    • NLM

      Tamoto H, Gioria R dos S, Carneiro C de C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models [Internet]. Journal of Petroleum Science and Engineering. 2024 ; 220 10 .[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2022.111169
    • Vancouver

      Tamoto H, Gioria R dos S, Carneiro C de C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models [Internet]. Journal of Petroleum Science and Engineering. 2024 ; 220 10 .[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2022.111169
  • Source: Journal of Petroleum Science and Engineering. Unidade: EP

    Assunto: ÓLEO E GAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KUBOTA, Leonardo Kenji e GIORIA, Rafael dos Santos. Data-driven technique estimates skin factor and average pressure during oil-flowing periods. Journal of Petroleum Science and Engineering, v. 219, p. 17, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2022.111061. Acesso em: 08 nov. 2025.
    • APA

      Kubota, L. K., & Gioria, R. dos S. (2022). Data-driven technique estimates skin factor and average pressure during oil-flowing periods. Journal of Petroleum Science and Engineering, 219, 17. doi:10.1016/j.petrol.2022.111061
    • NLM

      Kubota LK, Gioria R dos S. Data-driven technique estimates skin factor and average pressure during oil-flowing periods [Internet]. Journal of Petroleum Science and Engineering. 2022 ; 219 17.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2022.111061
    • Vancouver

      Kubota LK, Gioria R dos S. Data-driven technique estimates skin factor and average pressure during oil-flowing periods [Internet]. Journal of Petroleum Science and Engineering. 2022 ; 219 17.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2022.111061
  • Source: Journal of Petroleum Science and Engineering. Unidade: EP

    Subjects: INTELIGÊNCIA ARTIFICIAL, PETROGRAFIA, ROCHAS SEDIMENTARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUBO, Rafael Andrello et al. Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images. Journal of Petroleum Science and Engineering, v. 183, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2019.106382. Acesso em: 08 nov. 2025.
    • APA

      Rubo, R. A., Carneiro, C. de C., Michelon, M. F., & Gioria, R. dos S. (2019). Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images. Journal of Petroleum Science and Engineering, 183. doi:10.1016/j.petrol.2019.106382
    • NLM

      Rubo RA, Carneiro C de C, Michelon MF, Gioria R dos S. Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images [Internet]. Journal of Petroleum Science and Engineering. 2019 ;183[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2019.106382
    • Vancouver

      Rubo RA, Carneiro C de C, Michelon MF, Gioria R dos S. Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images [Internet]. Journal of Petroleum Science and Engineering. 2019 ;183[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2019.106382

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025