Filtros : "Journal of Geometry and Physics" "Financiamento CAPES" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES, IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando et al. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, v. 213, p. 1-9, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2025.105495. Acesso em: 08 nov. 2025.
    • APA

      Manfio, F., Santos, J. B. M. dos, Santos, J. P. dos, & Veken, J. V. der. (2025). Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, 213, 1-9. doi:10.1016/j.geomphys.2025.105495
    • NLM

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
    • Vancouver

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA, GEOMETRIA DIFERENCIAL CLÁSSICA, CONVEXIDADE, SUPERFÍCIES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Marco Antônio do Couto. Möbius inversion of surfaces in the Minkowski 3-space. Journal of Geometry and Physics, v. 190, p. 1-7, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104853. Acesso em: 08 nov. 2025.
    • APA

      Fernandes, M. A. do C. (2023). Möbius inversion of surfaces in the Minkowski 3-space. Journal of Geometry and Physics, 190, 1-7. doi:10.1016/j.geomphys.2023.104853
    • NLM

      Fernandes MA do C. Möbius inversion of surfaces in the Minkowski 3-space [Internet]. Journal of Geometry and Physics. 2023 ; 190 1-7.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104853
    • Vancouver

      Fernandes MA do C. Möbius inversion of surfaces in the Minkowski 3-space [Internet]. Journal of Geometry and Physics. 2023 ; 190 1-7.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104853
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA HIPERBÓLICA E ELÍTICA, RELATIVIDADE (GEOMETRIA DIFERENCIAL)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Rafael e REIS JUNIOR, João dos e GROSSI, Carlos Henrique. On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, v. 180, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2022.104629. Acesso em: 08 nov. 2025.
    • APA

      Ferreira, R., Reis Junior, J. dos, & Grossi, C. H. (2022). On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, 180, 1-13. doi:10.1016/j.geomphys.2022.104629
    • NLM

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
    • Vancouver

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: TEORIA DE CAMPOS, PSEUDOGRUPOS, GRUPOIDES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Bruno T e FORGER, Frank Michael e PÊGAS, Luiz Henrique Pereira. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem. Journal of Geometry and Physics, v. 169, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2021.104340. Acesso em: 08 nov. 2025.
    • APA

      Costa, B. T., Forger, F. M., & Pêgas, L. H. P. (2021). Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem. Journal of Geometry and Physics, 169. doi:10.1016/j.geomphys.2021.104340
    • NLM

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem [Internet]. Journal of Geometry and Physics. 2021 ; 169[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2021.104340
    • Vancouver

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem [Internet]. Journal of Geometry and Physics. 2021 ; 169[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2021.104340

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025