Filtros : "Journal of Geometry and Physics" "2017" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e MUNTHE-KAAS, Hans. Post-Lie algebras and factorization theorems. Journal of Geometry and Physics, v. 119, p. 19-33, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2017.04.007. Acesso em: 08 nov. 2025.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Munthe-Kaas, H. (2017). Post-Lie algebras and factorization theorems. Journal of Geometry and Physics, 119, 19-33. doi:10.1016/j.geomphys.2017.04.007
    • NLM

      Ebrahimi-Fard K, Mencattini I, Munthe-Kaas H. Post-Lie algebras and factorization theorems [Internet]. Journal of Geometry and Physics. 2017 ; 119 19-33.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.04.007
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Munthe-Kaas H. Post-Lie algebras and factorization theorems [Internet]. Journal of Geometry and Physics. 2017 ; 119 19-33.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.04.007
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Adriana A e MERCURI, Francesco e ONNIS, Irene Ignazia. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation. Journal of Geometry and Physics, v. No 2017, p. 396-412, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2017.08.005. Acesso em: 08 nov. 2025.
    • APA

      Cintra, A. A., Mercuri, F., & Onnis, I. I. (2017). Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation. Journal of Geometry and Physics, No 2017, 396-412. doi:10.1016/j.geomphys.2017.08.005
    • NLM

      Cintra AA, Mercuri F, Onnis II. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation [Internet]. Journal of Geometry and Physics. 2017 ; No 2017 396-412.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.08.005
    • Vancouver

      Cintra AA, Mercuri F, Onnis II. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation [Internet]. Journal of Geometry and Physics. 2017 ; No 2017 396-412.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.08.005
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, GEOMETRIA, SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, v. 118, p. 126-137, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2016.04.023. Acesso em: 08 nov. 2025.
    • APA

      Falqui, G., & Mencattini, I. (2017). Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, 118, 126-137. doi:10.1016/j.geomphys.2016.04.023
    • NLM

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
    • Vancouver

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025