Filtros : "Journal of Geometry and Physics" "Forger, Frank Michael" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Geometry and Physics. Unidade: IME

    Assuntos: TEORIA DE CAMPOS, PSEUDOGRUPOS, GRUPOIDES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Bruno T e FORGER, Frank Michael e PÊGAS, Luiz Henrique Pereira. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem. Journal of Geometry and Physics, v. 169, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2021.104340. Acesso em: 08 nov. 2025.
    • APA

      Costa, B. T., Forger, F. M., & Pêgas, L. H. P. (2021). Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem. Journal of Geometry and Physics, 169. doi:10.1016/j.geomphys.2021.104340
    • NLM

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem [Internet]. Journal of Geometry and Physics. 2021 ; 169[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2021.104340
    • Vancouver

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem [Internet]. Journal of Geometry and Physics. 2021 ; 169[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2021.104340
  • Fonte: Journal of Geometry and Physics. Unidade: IME

    Assuntos: TEORIA DE GAUGE, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Bruno Tadeu e FORGER, Frank Michael e PÊGAS, Luiz Henrique Pereira. Lie groupoids in classical field theory I: Noether’s theorem. Journal of Geometry and Physics, v. 131, p. 220-245, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2018.03.015. Acesso em: 08 nov. 2025.
    • APA

      Costa, B. T., Forger, F. M., & Pêgas, L. H. P. (2018). Lie groupoids in classical field theory I: Noether’s theorem. Journal of Geometry and Physics, 131, 220-245. doi:10.1016/j.geomphys.2018.03.015
    • NLM

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory I: Noether’s theorem [Internet]. Journal of Geometry and Physics. 2018 ; 131 220-245.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2018.03.015
    • Vancouver

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory I: Noether’s theorem [Internet]. Journal of Geometry and Physics. 2018 ; 131 220-245.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2018.03.015
  • Fonte: Journal of Geometry and Physics. Unidade: IME

    Assunto: TEORIA DE GAUGE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e SOARES, Bruno Learth. Local symmetries in gauge theories in a finite-dimensional setting. Journal of Geometry and Physics, v. 62, n. 9, p. 1925-1938, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2012.05.003. Acesso em: 08 nov. 2025.
    • APA

      Forger, F. M., & Soares, B. L. (2012). Local symmetries in gauge theories in a finite-dimensional setting. Journal of Geometry and Physics, 62( 9), 1925-1938. doi:10.1016/j.geomphys.2012.05.003
    • NLM

      Forger FM, Soares BL. Local symmetries in gauge theories in a finite-dimensional setting [Internet]. Journal of Geometry and Physics. 2012 ; 62( 9): 1925-1938.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2012.05.003
    • Vancouver

      Forger FM, Soares BL. Local symmetries in gauge theories in a finite-dimensional setting [Internet]. Journal of Geometry and Physics. 2012 ; 62( 9): 1925-1938.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2012.05.003

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025