Filtros : "Journal of Geometry and Physics" "Itália" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Geometry and Physics. Unidade: ICMC

    Assuntos: ÁLGEBRAS DE LIE, SISTEMAS HAMILTONIANOS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor e PEDRONI, Marco. Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, v. 186, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104773. Acesso em: 09 nov. 2025.
    • APA

      Falqui, G., Mencattini, I., & Pedroni, M. (2023). Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, 186, 1-10. doi:10.1016/j.geomphys.2023.104773
    • NLM

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
    • Vancouver

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
  • Fonte: Journal of Geometry and Physics. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL, PROBLEMAS VARIACIONAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTALDO, Stefano e ONNIS, Irene Ignazia e PASSAMANI, Apoenã Passos. Biharmonic constant mean curvature surfaces in Killing submersions. Journal of Geometry and Physics, v. No 2018, p. 91-101, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2018.05.028. Acesso em: 09 nov. 2025.
    • APA

      Montaldo, S., Onnis, I. I., & Passamani, A. P. (2018). Biharmonic constant mean curvature surfaces in Killing submersions. Journal of Geometry and Physics, No 2018, 91-101. doi:10.1016/j.geomphys.2018.05.028
    • NLM

      Montaldo S, Onnis II, Passamani AP. Biharmonic constant mean curvature surfaces in Killing submersions [Internet]. Journal of Geometry and Physics. 2018 ; No 2018 91-101.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.geomphys.2018.05.028
    • Vancouver

      Montaldo S, Onnis II, Passamani AP. Biharmonic constant mean curvature surfaces in Killing submersions [Internet]. Journal of Geometry and Physics. 2018 ; No 2018 91-101.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.geomphys.2018.05.028
  • Fonte: Journal of Geometry and Physics. Unidade: ICMC

    Assuntos: FÍSICA MATEMÁTICA, GEOMETRIA, SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, v. 118, p. 126-137, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2016.04.023. Acesso em: 09 nov. 2025.
    • APA

      Falqui, G., & Mencattini, I. (2017). Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, 118, 126-137. doi:10.1016/j.geomphys.2016.04.023
    • NLM

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
    • Vancouver

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
  • Fonte: Journal of Geometry and Physics. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASIELLO, Antônio e PICCIONE, Paolo. On the number of solutions for the two-point boundary value problem on Riemannian manifolds. Journal of Geometry and Physics, v. 49, n. 1, p. 67-88, 2004Tradução . . Disponível em: https://doi.org/10.1016/s0393-0440(03)00070-6. Acesso em: 09 nov. 2025.
    • APA

      Masiello, A., & Piccione, P. (2004). On the number of solutions for the two-point boundary value problem on Riemannian manifolds. Journal of Geometry and Physics, 49( 1), 67-88. doi:10.1016/s0393-0440(03)00070-6
    • NLM

      Masiello A, Piccione P. On the number of solutions for the two-point boundary value problem on Riemannian manifolds [Internet]. Journal of Geometry and Physics. 2004 ; 49( 1): 67-88.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0393-0440(03)00070-6
    • Vancouver

      Masiello A, Piccione P. On the number of solutions for the two-point boundary value problem on Riemannian manifolds [Internet]. Journal of Geometry and Physics. 2004 ; 49( 1): 67-88.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0393-0440(03)00070-6
  • Fonte: Journal of Geometry and Physics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A Morse theory for massive particles and photon in general relativity. Journal of Geometry and Physics, v. 35, n. 1, p. 1-34, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0393-0440(99)00045-5. Acesso em: 09 nov. 2025.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (2000). A Morse theory for massive particles and photon in general relativity. Journal of Geometry and Physics, 35( 1), 1-34. doi:10.1016/s0393-0440(99)00045-5
    • NLM

      Giannoni F, Masiello A, Piccione P. A Morse theory for massive particles and photon in general relativity [Internet]. Journal of Geometry and Physics. 2000 ; 35( 1): 1-34.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0393-0440(99)00045-5
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A Morse theory for massive particles and photon in general relativity [Internet]. Journal of Geometry and Physics. 2000 ; 35( 1): 1-34.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0393-0440(99)00045-5

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025