Filtros : "Journal of Geometry and Physics" "Indexado no Science Citation Index" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL, PROBLEMAS VARIACIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTALDO, Stefano e ONNIS, Irene Ignazia e PASSAMANI, Apoenã Passos. Biharmonic constant mean curvature surfaces in Killing submersions. Journal of Geometry and Physics, v. No 2018, p. 91-101, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2018.05.028. Acesso em: 08 nov. 2025.
    • APA

      Montaldo, S., Onnis, I. I., & Passamani, A. P. (2018). Biharmonic constant mean curvature surfaces in Killing submersions. Journal of Geometry and Physics, No 2018, 91-101. doi:10.1016/j.geomphys.2018.05.028
    • NLM

      Montaldo S, Onnis II, Passamani AP. Biharmonic constant mean curvature surfaces in Killing submersions [Internet]. Journal of Geometry and Physics. 2018 ; No 2018 91-101.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2018.05.028
    • Vancouver

      Montaldo S, Onnis II, Passamani AP. Biharmonic constant mean curvature surfaces in Killing submersions [Internet]. Journal of Geometry and Physics. 2018 ; No 2018 91-101.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2018.05.028
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e MUNTHE-KAAS, Hans. Post-Lie algebras and factorization theorems. Journal of Geometry and Physics, v. 119, p. 19-33, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2017.04.007. Acesso em: 08 nov. 2025.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Munthe-Kaas, H. (2017). Post-Lie algebras and factorization theorems. Journal of Geometry and Physics, 119, 19-33. doi:10.1016/j.geomphys.2017.04.007
    • NLM

      Ebrahimi-Fard K, Mencattini I, Munthe-Kaas H. Post-Lie algebras and factorization theorems [Internet]. Journal of Geometry and Physics. 2017 ; 119 19-33.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.04.007
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Munthe-Kaas H. Post-Lie algebras and factorization theorems [Internet]. Journal of Geometry and Physics. 2017 ; 119 19-33.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.04.007
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Adriana A e MERCURI, Francesco e ONNIS, Irene Ignazia. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation. Journal of Geometry and Physics, v. No 2017, p. 396-412, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2017.08.005. Acesso em: 08 nov. 2025.
    • APA

      Cintra, A. A., Mercuri, F., & Onnis, I. I. (2017). Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation. Journal of Geometry and Physics, No 2017, 396-412. doi:10.1016/j.geomphys.2017.08.005
    • NLM

      Cintra AA, Mercuri F, Onnis II. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation [Internet]. Journal of Geometry and Physics. 2017 ; No 2017 396-412.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.08.005
    • Vancouver

      Cintra AA, Mercuri F, Onnis II. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation [Internet]. Journal of Geometry and Physics. 2017 ; No 2017 396-412.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2017.08.005
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, GEOMETRIA, SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, v. 118, p. 126-137, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2016.04.023. Acesso em: 08 nov. 2025.
    • APA

      Falqui, G., & Mencattini, I. (2017). Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, 118, 126-137. doi:10.1016/j.geomphys.2016.04.023
    • NLM

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
    • Vancouver

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space. Journal of Geometry and Physics, v. No 2015, p. 105-118, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2015.07.014. Acesso em: 08 nov. 2025.
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2015). Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space. Journal of Geometry and Physics, No 2015, 105-118. doi:10.1016/j.geomphys.2015.07.014
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space [Internet]. Journal of Geometry and Physics. 2015 ; No 2015 105-118.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2015.07.014
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space [Internet]. Journal of Geometry and Physics. 2015 ; No 2015 105-118.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2015.07.014
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DA BIFURCAÇÃO, GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOMITRZ, Wojciech e MANOEL, Miriam Garcia e RIOS, Pedro Paulo de Magalhães. The Wigner caustic on shell and singularities of odd functions. Journal of Geometry and Physics, v. 71, p. 58-72, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2013.04.005. Acesso em: 08 nov. 2025.
    • APA

      Domitrz, W., Manoel, M. G., & Rios, P. P. de M. (2013). The Wigner caustic on shell and singularities of odd functions. Journal of Geometry and Physics, 71, 58-72. doi:10.1016/j.geomphys.2013.04.005
    • NLM

      Domitrz W, Manoel MG, Rios PP de M. The Wigner caustic on shell and singularities of odd functions [Internet]. Journal of Geometry and Physics. 2013 ; 71 58-72.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2013.04.005
    • Vancouver

      Domitrz W, Manoel MG, Rios PP de M. The Wigner caustic on shell and singularities of odd functions [Internet]. Journal of Geometry and Physics. 2013 ; 71 58-72.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2013.04.005
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: FUNÇÃO ZETA, OPERADORES ELÍTICOS, DETERMINANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio. Zeta function and regularized determinant on a disc and on a cone. Journal of Geometry and Physics, v. 54, n. 3, p. 355-371, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2004.10.005. Acesso em: 08 nov. 2025.
    • APA

      Spreafico, M. F. (2005). Zeta function and regularized determinant on a disc and on a cone. Journal of Geometry and Physics, 54( 3), 355-371. doi:10.1016/j.geomphys.2004.10.005
    • NLM

      Spreafico MF. Zeta function and regularized determinant on a disc and on a cone [Internet]. Journal of Geometry and Physics. 2005 ; 54( 3): 355-371.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2004.10.005
    • Vancouver

      Spreafico MF. Zeta function and regularized determinant on a disc and on a cone [Internet]. Journal of Geometry and Physics. 2005 ; 54( 3): 355-371.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2004.10.005

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025