Filtros : "Journal of Dynamics and Differential Equations" "Financiado pela CAPES" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCANEGRA-RODRÍGUEZ, Lito Edinson et al. Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, v. 35, n. 2, p. 1435-1456, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09955-7. Acesso em: 09 nov. 2025.
    • APA

      Bocanegra-Rodríguez, L. E., Silva, M. A. J. da, Ma, T. F., & Seminario-Huertas, P. N. (2023). Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, 35( 2), 1435-1456. doi:10.1007/s10884-021-09955-7
    • NLM

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
    • Vancouver

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes e SILVA, Marcio A. Jorge e NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, v. 32, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09766-x. Acesso em: 09 nov. 2025.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 09 nov. 2025.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Assuntos: EQUAÇÕES DIFERENCIAIS DA FÍSICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e CARDOSO, João Lopes e TONON, Durval José. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1899-1920, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9636-9. Acesso em: 09 nov. 2025.
    • APA

      Carvalho, T. de, Cardoso, J. L., & Tonon, D. J. (2018). Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, 30( 4), 1899-1920. doi:10.1007/s10884-017-9636-9
    • NLM

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9636-9
    • Vancouver

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9636-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold e OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, v. 28, n. 3/4, p. 1357–1391, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9456-8. Acesso em: 09 nov. 2025.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025