Filtros : "Journal of Dynamics and Differential Equations" "2022" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 09 nov. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ROBUSTEZ, DIMENSÃO INFINITA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e CARABALLO, Tomás e NAKASSIMA, Guilherme Kenji. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, v. 34, p. 2841-2865, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09854-3. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., Caraballo, T., & Nakassima, G. K. (2022). Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, 34, 2841-2865. doi:10.1007/s10884-020-09854-3
    • NLM

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
    • Vancouver

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 09 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025