Filtros : "Journal of Dynamics and Differential Equations" "2020" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 605-614, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09750-5. Acesso em: 09 nov. 2025.
    • APA

      Federson, M., Györi, I., Mesquita, J. G., & Taboas, P. Z. (2020). A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, 32( 2), 605-614. doi:10.1007/s10884-019-09750-5
    • NLM

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
    • Vancouver

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE SISTEMAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e SANTOS, Fabio L. Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, v. 32, p. 2021-2060, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09801-x. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Santos, F. L. (2020). Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, 32, 2021-2060. doi:10.1007/s10884-019-09801-x
    • NLM

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
    • Vancouver

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes e SILVA, Marcio A. Jorge e NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, v. 32, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09766-x. Acesso em: 09 nov. 2025.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 09 nov. 2025.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e TROFIMCHUK, Sergei. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 921-939, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09748-z. Acesso em: 09 nov. 2025.
    • APA

      Morales, E. A. H., & Trofimchuk, S. (2020). Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, 32( 2), 921-939. doi:10.1007/s10884-019-09748-z
    • NLM

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
    • Vancouver

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09748-z

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025