Filtros : "Journal of Dynamics and Differential Equations" "CARVALHO, ALEXANDRE NOLASCO DE" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BANAṤKIEWICZ, Jakub et al. Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, v. 36, n. 4, p. 3481-3534, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-022-10239-x. Acesso em: 09 nov. 2025.
    • APA

      Banaṥkiewicz, J., Carvalho, A. N. de, Garcia-Fuentes, J., & Kalita, P. (2024). Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, 36( 4), 3481-3534. doi:10.1007/s10884-022-10239-x
    • NLM

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
    • Vancouver

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 09 nov. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M et al. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, v. 24, n. 3, p. 427-481, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10884-012-9269-y. Acesso em: 09 nov. 2025.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini et al. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, v. 18, n. 3, p. 767-814, 2006Tradução . . Disponível em: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf. Acesso em: 09 nov. 2025.
    • APA

      Bruschi, S. M., Cholewa, J. W., Carvalho, A. N. de, & Dlotko, T. (2006). Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, 18( 3), 767-814. Recuperado de http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • NLM

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • Vancouver

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CUMINATO, José Alberto. Reaction-difusion problems in cell tissues. Journal of Dynamics and Differential Equations, v. 9, n. 1, p. 93-131, 1997Tradução . . Disponível em: https://doi.org/10.1007/bf02219054. Acesso em: 09 nov. 2025.
    • APA

      Carvalho, A. N. de, & Cuminato, J. A. (1997). Reaction-difusion problems in cell tissues. Journal of Dynamics and Differential Equations, 9( 1), 93-131. doi:10.1007/bf02219054
    • NLM

      Carvalho AN de, Cuminato JA. Reaction-difusion problems in cell tissues [Internet]. Journal of Dynamics and Differential Equations. 1997 ; 9( 1): 93-131.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219054
    • Vancouver

      Carvalho AN de, Cuminato JA. Reaction-difusion problems in cell tissues [Internet]. Journal of Dynamics and Differential Equations. 1997 ; 9( 1): 93-131.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219054

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025