Filtros : "Journal of Dynamics and Differential Equations" "IME-MAT" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 09 nov. 2025.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, v. 36, p. 3711-3742, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10339-2. Acesso em: 09 nov. 2025.
    • APA

      Moreira, E. M., & Valero, J. (2024). The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, 36, 3711-3742. doi:10.1007/s10884-023-10339-2
    • NLM

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
    • Vancouver

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 09 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Gleiciane da Silva e PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, v. 26, n. 4, p. 871-888, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10884-014-9412-z. Acesso em: 09 nov. 2025.
    • APA

      Aragão, G. da S., Pereira, A. L., & Pereira, M. C. (2014). Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, 26( 4), 871-888. doi:10.1007/s10884-014-9412-z
    • NLM

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
    • Vancouver

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e TERRA, Gláucio. Birkhoffian systems in infinite dimensional manifolds. Journal of Dynamics and Differential Equations, v. 22, n. 2, p. 193-201, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-009-9137-6. Acesso em: 09 nov. 2025.
    • APA

      Oliva, W. M., & Terra, G. (2010). Birkhoffian systems in infinite dimensional manifolds. Journal of Dynamics and Differential Equations, 22( 2), 193-201. doi:10.1007/s10884-009-9137-6
    • NLM

      Oliva WM, Terra G. Birkhoffian systems in infinite dimensional manifolds [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 193-201.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-009-9137-6
    • Vancouver

      Oliva WM, Terra G. Birkhoffian systems in infinite dimensional manifolds [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 193-201.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-009-9137-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025